Skip to main content

Quantitative trait loci and the study of plant domestication

  • Chapter

Part of the book series: Georgia Genetics Review III ((GEGR,volume 3))

Abstract

Plant domestication ranks as one of the most important developments in human history, giving human populations the potential to harness unprecedented quantities of the earth’s resources. But domestication has also played a more subtle historical role as the foundation of the modern study of evolution and adaptation. Until recently, however, researchers interested in domestication were limited to studying phenotypic changes or the genetics of simple Mendelian traits, when often the characters of most interest — fruit size, yield, height, flowering time, etc. — are quantitative in nature. The goals of this paper are to review some of the recent work on the quantitative genetics of plant domestication, identify some of the common trends found in this literature, and offer some novel interpretations of the data that is currently available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aert, R., L. Sági & G. Volckaert, in press. Gene content and density in banana (Musa acuminata) as revealed by genomic sequencing of BAC clones. Theor. Appl. Genet.

    Google Scholar 

  • Anderson, W.W., J. Arnold, D.G. Baldwin, A.T. Beckenbach, C.J. Brown, S.H. Bryant, J.A. Coyne, L.G. Harshman & W.B. Heed, 1991. Four decades of inversion polymorphism in Drosophila pseudoobscura. Proc. Natl. Acad. Sci. USA 88: 10367–10371.

    PubMed  Google Scholar 

  • Barton, N.H. & P.D. Keightley, 2002. Understanding quantitative genetic variation. Nat. Rev. Genet. 3: 11–21.

    PubMed  Google Scholar 

  • Baum, M., S. Grando, G. Backes, A. Jahoor, A. Sabbagh & S. Ceccarelli, 2003. QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41-1. Theor. Appl. Genet. 107: 1215–1225.

    PubMed  Google Scholar 

  • Bres-Patry, C., M. Lorieux, G. Clement, M. Bangratz & A. Ghesquiere, 2001. Heredity and genetic mapping of domestication-related traits in a temperate japonica weedy rice. Theor. Appl. Genet. 102: 118–126.

    Google Scholar 

  • Burke, J.M., S. Tang, S.J. Knapp & L.H. Rieseberg, 2002. Genetic analysis of sunflower domestication. Genetics 161: 1257–1267.

    PubMed  Google Scholar 

  • Cai, H.W. & H. Morishima, 2002. QTL clusters reflect character associations in wild and cultivated rice. Theor. Appl. Genet. 104: 1217–1228.

    PubMed  Google Scholar 

  • Cowie, R.H. & J.S. Jones, 1998. Gene frequency changes in Cepaea snails on the Marlborough Downs over 25 years. Biol. J. Linn. Soc. 65: 233–255.

    Google Scholar 

  • Darwin, C., 1899. The Origin of Species. H.M. Caldwell Co., New York, NY., USA.

    Google Scholar 

  • Doebley, J., A. Stec & L. Hubbard, 1997. The evolution of apical dominance in maize. Nature 386: 485–488.

    PubMed  Google Scholar 

  • Doebley, J., A. Stec, J. Wendel & M. Edwards, 1990. Genetic and morphological analysis of a maize-teosinte F-2 population implications for the origin of maize. Proc. Natl. Acad. Sci. USA 87: 9888–9892.

    PubMed  Google Scholar 

  • Doganlar, S., A. Frary, M.C. Daunay, R.N. Lester & S.D. Tanksley, 2002. Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161: 1713–1726.

    PubMed  Google Scholar 

  • Dudley, J.W. and R.J. Lambert, 1992. Ninety generations of selection for oil and protein in maize. Maydica 37:1–7

    Google Scholar 

  • Eyre-Walker, A., R.L. Gaut, H. Hilton, D.L. Feldman & B.S. Gaut, 1998. Investigation of the bottleneck leading to the domestication of maize. Proc. Natl. Acad. Sci. USA 95: 4441–4446.

    PubMed  Google Scholar 

  • Frary, A. & S. Doganlar, 2003. Comparative genetics of crop plant domestication and evolution. Turkish J. Agr. For. 27: 59–69.

    Google Scholar 

  • Frary, A., S. Doganlar, M.C. Daunay & S.D. Tanksley, 2003. QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of solanaceous species. Theor. Appl. Genet. 107: 359–370.

    PubMed  Google Scholar 

  • Frary, A., T.C. Nesbitt, A. Frary, S. Grandillo, E. van der Knaap, B. Cong, J. Liu, J. Meller, R. Elber, K.B. Alpert & S.D. Tanksley, 2000. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289: 85–88.

    PubMed  Google Scholar 

  • Fu, H., Z. Zheng & H.K. Dooner, 2001. Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude. Proc. Natl. Acad. Sci. USA 99: 1082–1087.

    Google Scholar 

  • Fulton, T.M., B.T. Beck, D. Emmatty, Y. Eshed, J. Lopez, V. Petiard, J. Uhlig, D. Zamir & S.D. Tanksley, 1997. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor. Appl. Genet. 95: 881–894.

    Google Scholar 

  • Gill, K.S., B.S. Gill, T.R. Endo & E.V. Boyko, 1996. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143: 1001–1012.

    PubMed  Google Scholar 

  • Gottlieb, L.D., 1984. Genetics and morphological evolution in plants. Am. Nat. 123: 681–709.

    Google Scholar 

  • Grant, P.R. & B.R. Grant, 2002. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296: 707–711.

    PubMed  Google Scholar 

  • Grant, V., 1981. Plant Speciation. Columbia University Press, New York, NY., USA.

    Google Scholar 

  • Harlan, J.R., 1992. Crops and Man. American Society of Agronomy: Crop Science Society of America, Madison WI, USA.

    Google Scholar 

  • Hashizume, T., I. Shimamoto & M. Hirai, 2003. Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (Thunb.) Mastsum and Nakai] using RAPD, RFLP and ISSR markers. Theor. Appl. Genet. 106: 779–785.

    PubMed  Google Scholar 

  • Hillman, G.C. & M.S. Davies, 1990. Domestication rates in wild-type wheats and barley under primitive cultivation. Biol. J. Linn. Soc. 39: 39–78.

    Google Scholar 

  • Hilu, K.W., 1983. The role of single-gene mutations in the evolution of flowering plants. Evol. Biol. 16: 97–128.

    Google Scholar 

  • Huang, X.Q., H. Coester, M.W. Ganal & M.S. Roeder, 2003. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor. Appl. Genet. 106: 1379–1389.

    PubMed  Google Scholar 

  • Johnson, W.C., L.E. Jackson, O. Ochoa, R. van Wijk, J. Peleman, D.A. St. Clair & R.W. Michelmore, 2000. Lettuce, a shallow-rooted crop, and Lactuca serriola, its wild progenitor, differ at QTL determining root architecture and deep soil water exploitation. Theor. Appl. Genet. 101: 1066–1073.

    Google Scholar 

  • Koinange, E.M.K., S.P. Singh & P. Gepts, 1996. Genetic control of the domestication syndrome in common bean. Crop Sci. 36: 1037–1045.

    Google Scholar 

  • Ladizinsky, G., 1985. Founder effect in crop-plant evolution. Econ. Bot. 39: 191–199.

    Google Scholar 

  • Lande, R., 1983. The response to selection on major and minor mutations affecting a metrical trait. Heredity 50: 47–65.

    Google Scholar 

  • Le Thierry D’Ennequin, M., B. Toupance, T. Robert, B. Godelle & P.H. Gouyon, 1999. Plant domestication: a model for studying the selection of linkage. J. Evol. Biol. 12: 1138–1147.

    Google Scholar 

  • Lenormand, T. & S.P. Otto, 2000. The evolution of recombination in a heterogeneous environment. Genetics 156: 423–428.

    PubMed  Google Scholar 

  • Lester, R.N., 1989. Evolution under domestication involving disturbance of genic balance. Euphytica 44: 125–132.

    Google Scholar 

  • Mauricio, R., 2001. Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat. Rev. Genet. 2: 370–381.

    PubMed  Google Scholar 

  • Orr, H.A., 1998a. The population genetics of adaptation: the distribution of factors fixed during adaptive evolution. Evolution 52: 935–949.

    Google Scholar 

  • Orr, H. A., 1998b. Testing natural selection vs. genetic drift in phenotypic evolution using quantitative trait locus data. Genetics 149: 2099–2104.

    PubMed  Google Scholar 

  • Orr, H.A., 2003. The distribution of fitness effects among beneficial mutations. Genetics 163: 1519–1526.

    PubMed  Google Scholar 

  • Orr, H.A. & A.J. Betancourt, 2001. Haldane’s sieve and adaptation from the standing genetic variation. Genetics 157: 875–884.

    PubMed  Google Scholar 

  • Orr, H.A. & J.A. Coyne, 1992. The genetics of adaptation: a reassessment. Am. Nat. 140: 725–742.

    Google Scholar 

  • Otto, S.P. & N.H. Barton, 1997. The evolution of recombination: removing the limits to natural selection. Genetics 147: 879–906.

    PubMed  Google Scholar 

  • Otto, S.P. & N.H. Barton, 2001. Selection for recombination in small populations. Evolution 55: 1921–1931.

    PubMed  Google Scholar 

  • Paterson, A.H., 2002. What has QTL mapping taught us about plant domestication? New Phytol. 154: 591–08.

    Google Scholar 

  • Paterson, A.H., S. Damon, J.D. Hewitt, D. Zamir, H.D. Rabinowitch, S.E. Lincoln, E.S. Lander & S.D. Tanksley, 1991. Mendelian factors underlying quantitative traits in tomato — comparison across species, generations, and environments. Genetics 127: 181–197.

    PubMed  Google Scholar 

  • Paterson, A.H., Y.R. Lin, Z. Li, K.F. Schertz, J.F. Doebley, S.R.M. Pinson, S.C. Liu, J.W. Stansel & J.E. Irvine, 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269: 1714–1718.

    Google Scholar 

  • Peng, J., Y. Ronin, T. Fahima, M.S. Roder, Y. Li, E. Nevo & A. Korol, 2003. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl. Acad. Sci. USA 100: 2489–2494.

    PubMed  Google Scholar 

  • Pernes, J., 1983. The genetics of the domestication of cereals. Recherche 14: 910–919.

    Google Scholar 

  • Pillen, K., A. Zacharias & J. Léon, 2004. Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor. Appl. Genet. 108: 1591–1601.

    PubMed  Google Scholar 

  • Poncet, V., F. Lamy, K.M. Devos, M.D. Gale, A. Sarr & T. Robert, 2000. Genetic control of domestication traits in pearl millet (Pennisetum glaucum L., Poaceae). Theor. Appl. Genet. 100: 147–159.

    Google Scholar 

  • Poncet, V., F. Lamy, J. Enjalbert, H. Joly, A. Sarr & T. Robert, 1998. Genetic analysis of the domestication syndrome in pearl millet (Pennisetum glaucum L., Poaceae): Inheritance of the major characters. Heredity 81: 648–58.

    Google Scholar 

  • Rao, G.U., C.A. Ben, Y. Borovsky & I. Paran, 2003. Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor. Appl. Genet. 106: 1457–1466.

    PubMed  Google Scholar 

  • Rieseberg, L.H., A. Widmer, A.M. Arntz & J.M. Burke, 2002. Directional selection is the primary cause of phenotypic diversification. Proc. Natl. Acad. Sci. USA 99: 12242–12245.

    PubMed  Google Scholar 

  • Ross-Ibarra, J., 2004. The evolution of recombination under domestication: a test of two hypotheses. Am. Nat. 163: 105–112.

    PubMed  Google Scholar 

  • Takeuchi, Y., S.Y. Lin, T. Sasaki & M. Yano, 2003. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor. Appl. Genet. 107: 1174–1180.

    PubMed  Google Scholar 

  • Thomson, M.J., T.H. Tai, A.M. McClung, X-H. Lai, M.E. Hinga, K.B. Lobos, Y. Xu, C.P. Martinez & S.R. McCouch, 2003. Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor. Appl. Genet. 107: 479–493.

    PubMed  Google Scholar 

  • Varona, L., L. Gomez-Raya, W.M. Rauw, A. Clop, C. Ovilo & J.L. Noguera, 2004. Derivation of a Bayes factor to distinguish between linked or pleiotropic quantitative trait loci. Genetics 166: 1025–1035.

    PubMed  Google Scholar 

  • Vavilov, N., 1922. The law of homologous series in variation. J. Genet. 12: 47–89.

    Google Scholar 

  • Visser, M.E., A.J. van Noordwijk, J.M. Tinbergen & C.M. Lessells, 1998. Warmer springs lead to mistimed reproduction in great tits (Parus major). Proc. R. Soc. Lond., Ser. B: Biol. Sci. 265: 1867–1870.

    Google Scholar 

  • Wang, R.L., A. Stec, J. Hey, L. Lukens & J. Doebley, 1999. The limits of selection during maize domestication. Nature 398: 236–239.

    PubMed  Google Scholar 

  • Wang, D., G.L. Graef, A.M. Procopiuk, & B.W. Diers, 2004. Identification of putative QTL that underlie yield in interspecific soybean backcross populations. Theor. Appl. Genet. 108: 458–467.

    PubMed  Google Scholar 

  • Ware, D & L. Stein, 2003. Comparison of genes among cereals. Curr. Opin. Plant Biol. 6: 121–127.

    PubMed  Google Scholar 

  • Westerbergh, A. & J. Doebley, 2002. Morphological traits defining species differences in wild relatives of maize are controlled by multiple quantitative trait loci. Evolution 56: 273–283.

    PubMed  Google Scholar 

  • Xiao, J.H., J.M. Li, S. Grandillo, S.N. Ahn, L.P. Yuan, S.D. Tanksley & S.R. McCouch, 1998. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150: 899–909.

    PubMed  Google Scholar 

  • Xiong, L.X., K.D. Liu, X.K. Dai, C.G. Xu & Q.F. Zhang, 1999. Identification of genetic factors controlling domestication-related traits of rice using an F-2 population of a cross between Oryza sativa and O. rufipogon. Theor. Appl. Genet. 98: 243–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rodney Mauricio

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Ross-Ibarra, J. (2005). Quantitative trait loci and the study of plant domestication. In: Mauricio, R. (eds) Genetics of Adaptation. Georgia Genetics Review III, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3836-4_18

Download citation

Publish with us

Policies and ethics