Skip to main content

Supernova Remnants as Cosmic Accelerators

  • Conference paper
Book cover Neutrinos and Explosive Events in the Universe

Part of the book series: NATO Science Series ((NAII,volume 209))

  • 557 Accesses

Abstract

Most cosmic rays are thought to be accelerated by the shocks of supernova explosions.The data on cosmic rays at the Earth and the observations of nonthermal radiation from supernova remnants testify that the particles are accelerated with high efficiency and in a wide range of energies.We discuss the acceleration of galactic cosmic rays in supernova remnants in a general context of the problem of cosmic-ray origin.The scenario of cosmic ray acceleration will be probably verified in full details when the data from the new generation of ground-based and space gamma-ray experiments in conjunction with new X-ray satellites will be available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baade, W., and F. Zwicky. (1934). “Remarks on super-novae and cosmic rays“, Phys. Rev. 46, 76.

    Article  ADS  Google Scholar 

  2. Fermi E. (1949). “On the origin of the cosmic radiation“, Phys.Rev. 75, 1169.

    Article  ADS  MATH  Google Scholar 

  3. Ginzburg, V.L., and S.I. Syrovatskii. (1964). The Origin of Cosmic Rays. Oxford: Pergamon Press.

    Google Scholar 

  4. Berezinskii, V.S., S.V. Bulanov, V.A. Digiel, V.L. Ginzburg, and V.S. Ptuskin. (1990). Astrophysics of Cosmic Rays. North-Holland.

    Google Scholar 

  5. Ptuskin, V.S. (2001). “Propagation, confinement models, and large-scale dynamical effects of galactic cosmic rays“, Space. Sci. Rev. 99, 281

    Article  ADS  Google Scholar 

  6. Strong, A., and I.V. Moskalenko. (1998). “Propagation of cosmic-ray nuclei“, ApJ 509, 212.

    Article  ADS  Google Scholar 

  7. Jones F.C.et al. (2001). “The modified weighted slab technique: models and results“, ApJ 547, 264.

    Article  ADS  Google Scholar 

  8. Lozinskaya, T.A. (1992). Supernovae and Stellar Wind:The Interaction with the Interstellar Medium. AIP

    Google Scholar 

  9. Jones, T.et al. (2003) “The identification of infrared synchrotron radiation from Cassiopeia A“, ApJ 587, 227.

    Article  ADS  Google Scholar 

  10. Esposito, J.A.et al. (1996). “EGRET observations of gamma-ray emission from supernova remnants“, ApJ 461, 820.

    Article  ADS  Google Scholar 

  11. Petre, R., U. Hwang, and G.E. Allen. (2001). “Evidence for cosmic-ray acceleration in supernova remnants from X-ray observatons“. Adv.Space Res., 27, 647.

    Article  ADS  Google Scholar 

  12. Vink, J. (2003). “Shocks and particle acceleration in supernova remnants: observational features“, Adv.Space Res. 35, 356.

    Google Scholar 

  13. Muraishi, H.et al. (2000) “Evidence for TeV gamma-ray emission from shell type SNR RX J1713.7-3946“, A& A 354, L57.

    ADS  Google Scholar 

  14. Aharonian, F.A.et al. (2001). “Evidence for TeV gamma ray emission from Cassiopea A“, A& A 370, 112.

    Article  ADS  Google Scholar 

  15. Tanimori, T.et al. (1998). “Discovery of TeV gamma rays from SN 1006: further evidence for the supernova remnant origin of cosmic rays“, ApJ 497, L25.

    Article  ADS  Google Scholar 

  16. Hofmann, W. (2004). “Status of ground based gamma ray astronomy“, Intern. Symp. on High Energy Gamma Ray Astronomy, Heidelberg (in press)

    Google Scholar 

  17. Meyer, J.P. (1985). “Solar-stellar outer atmospheres and energetic particles, and galactic cosmic rays“, ApJ Suppl., 57, 173.

    Article  ADS  Google Scholar 

  18. Epstein, R.I. (1980) “The acceleration of interstellar grains and the composition of the cosmic rays“, MNRAS 193, 723.

    ADS  Google Scholar 

  19. Meyer, J.P., L. O’C. Drury L., and D.C. Ellison. (1997). “Galactic cosmic rays from supernova remnants. I. A cosmic-ray composition controlled by volatility and mass-to-charge Ratio“, ApJ 487, 182.

    Article  ADS  Google Scholar 

  20. Lingenfelter, R.E., R. Ramaty, and B. Kozlovsky. (1998). “Supernova grains: the source of cosmic-ray metals“, ApJ 500, L153.

    Article  ADS  Google Scholar 

  21. Higdon, J.C., R.E. Lingenfelter, and R. Ramaty. (1998). “Cosmic-ray acceleration from supernova ejecta in superbubbles“, ApJ 509, L33.

    Article  ADS  Google Scholar 

  22. Wiedenbeck, M.E.et al. (1999). “The isotopic composition of iron, cobalt, and nickel in cosmic ray source material“, 26th ICRC, Salt Lake City, 3, 1.

    Google Scholar 

  23. DuVernois, M.A.et al. (1996). “The Isotopic Composition of Galactic Cosmic-Ray Elements from Carbon to Silicon: The Combined Release and Radiation Effects Satellite Investigation“, ApJ 466, 457.

    Article  ADS  Google Scholar 

  24. Casse, M., and J.A. Paul. (1982). “On the stellar origin of the Ne-22 excess in cosmic rays“, ApJ 258, 860.

    Article  ADS  Google Scholar 

  25. Mewaldt, R.A.et al. (1999). “The time delay between nucleosynthesis and acceleration based on ACE measurements of primary electron-capture nuclides“, 26th Intern. Cosmic Ray Conf., Salt Lake City, 3, 45.

    Google Scholar 

  26. Casse, M., and A. Soutoul. (1978). “Time delay between explosive nucleosynthesis and cosmic ray acceleration“, ApJ 200, L75.

    Article  ADS  Google Scholar 

  27. Krymsky, G.F. (1977). “A regular mechanism for the acceleration of charged particles on the front of a shock wave“, Soviet Physics-Doklady 22, 327.

    ADS  Google Scholar 

  28. Axford, W.I., E. Leer, and G. Skadron. (1977). 15th Intern. Cosmic Ray Conf., Plovdiv, 11, 131.

    Google Scholar 

  29. Bell, A.R. (1978). “The acceleration of cosmic rays in shock fronts“, MNRAS 182, 147.

    ADS  Google Scholar 

  30. Blandford, R.D., and J. Ostriker. (1978). “Particle acceleration by astrophysical shocks“, ApJ 221, L29.

    Article  ADS  Google Scholar 

  31. Drury, L.O’C.et al. (2001). “Test of galactic cosmic-ray source model“, Space Sci. Rev. 99, 329.

    Article  ADS  Google Scholar 

  32. Malkov, M.A., and L.O’C. Drury. (2001). “Nonlinier theory of diffusive acceleration of particles by shock waves“, Rep. Progress in Physics 64, 429.

    Article  ADS  Google Scholar 

  33. Weaver, R.et al. (1977). “Interstellar bubbles. II-Structure and evolution“, ApJ 218, 377.

    Article  ADS  Google Scholar 

  34. Berezhko, E.G., V.K. Elshin, and L.T. Ksenofontov. (1996). “Cosmic-ray acceleration in supernova remnants“, JETP 82, 1.

    ADS  Google Scholar 

  35. Vink, J. (2003). “Shocks and particle acceleration in supernova remnants: observational features“, astro-ph/0304176.

    Google Scholar 

  36. Buckley, J.H.et al. (1998). “Constraints on cosmic-ray origin from TeV gamma-ray observations of supernova remnants“, A&A 329, 639.

    ADS  Google Scholar 

  37. Drury, L. O’C., F.A. Aharonian, and H.J. Völk. (1994). “The gamma-ray visibility of supernova remnants.A test of cosmic-ray origin“, A&A 287, 959.

    ADS  Google Scholar 

  38. Naito, T., and F. Takahara. (1994). “High energy gamma-ray emission from supernova remnants“, JPhG 20, 477.

    ADS  Google Scholar 

  39. Esposito, J.A.et al. (1996). “EGRET observations of gamma-ray emission from supernova remnants“, ApJ 461, 820.

    Article  ADS  Google Scholar 

  40. Ptuskin, V.S., and V.N. Zirakashvili. (2003). “Limits on diffusive shock acceleration in supernova remnants in the presence of cosmic-ray streaming instability and wave dissipation“, A&A 403, 1.

    Article  ADS  Google Scholar 

  41. Ptuskin, V.S., and V.N. Zirakashvili. (2004). “On the spectrum of high-energy cosmic rays produced by supernova remnants in the presence of strong cosmic-ray streaming instability and wave dissipation“, A&A, in press;astro-ph/0408025.

    Google Scholar 

  42. Bell, A.R., and S.G. Lucek. (2001). “Cosmic-ray acceleration to very high energie through the non-linear amplification by cosmic rays of the seed magnetic field“, MN-RAS 321, 433.

    Article  ADS  Google Scholar 

  43. Ulrich, H.et al. (2003). ‘Spectra of cosmic rays in the knee region“, Nucl.Phys.B (Proc. Suppl.) 122, 218.

    Article  ADS  Google Scholar 

  44. Hörandel, J.R. (2003). “On the knee in the energy spectrum of cosmic rays“, Astroparticle Physics 19, 193.

    Article  ADS  Google Scholar 

  45. Sveshnikova, L.G. (2003). “The knee in galactic cosmic ray spectrum and variety in supernovae“, A&A 409, 799.

    Article  ADS  Google Scholar 

  46. Silberberg, R., C.H. Tsao, M.M. Shapiro, and P.L. Biermann. (1991). Cosmic Rays, Supernovae, Interstellar Medium, ed. M.M. Shapiro, R. Silberberg & J.P. Wefel, (Kluwer Ac. Publ.), p.97.

    Google Scholar 

  47. Bell, A.R., and S.G. Lucek. (1996) “Cosmic-ray acceleration in pulsar-driven supernova remnants: the effect of scattering“, MNRAS 283, 1083.

    ADS  Google Scholar 

  48. Arons, J. (2003) “Magnetars in the Metagalaxy: an origin for ultra-high energy cosmic rays in the nearby Universe“, ApJ 589, 871.

    Article  ADS  Google Scholar 

  49. Blasi, P., R.L. Epstein, and A.V. Olinto. (2000). “Ultra-high-energy cosmic rays from young neutron star winds“, ApJ 533, L123.

    Article  ADS  Google Scholar 

  50. Axford, W.I. (1994). “The origin of high-energy cosmic rays“, ApJS 90, 937.

    Article  ADS  Google Scholar 

  51. Bykov, A.M., and I.N. Toptygin. (2001). “A model of particle acceleration to high energies by multiple supernova explosions in OB associations“, Astron. Let. 27, 625.

    Article  ADS  Google Scholar 

  52. Jokipii, J.R., and G.E. Morfill. (1985). “On the origin of high-energy cosmic rays“, ApJ 290, L1.

    Article  ADS  Google Scholar 

  53. Völk, H.J., and V.N. Zirakashvili. (2004). “Cosmic ray acceleration by spiral shocks in the galactic wind“, A&A 417, 807.

    Article  ADS  Google Scholar 

  54. Ptuskin, V.S.et al. (1993). “Diffusion and drift of very high energy cosmic rays in galactic magnetic fields“, A&A 268, 726.

    ADS  Google Scholar 

  55. Roulet, E. (2003). “Astroparticle theory, some new insights into high energy cosmic rays“, astro-ph/0310367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Ptuskin, V. (2005). Supernova Remnants as Cosmic Accelerators. In: Shapiro, M.M., Stanev, T., Wefel, J.P. (eds) Neutrinos and Explosive Events in the Universe. NATO Science Series, vol 209. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3748-1_8

Download citation

Publish with us

Policies and ethics