Skip to main content

RhoA/C and the Actin Cytoskeleton

  • Chapter

Part of the book series: Proteins and Cell Regulation ((PROR,volume 3))

Abstract

Rho belongs to the Rho family guanosine triphosphatases (GTPases) including Rho, Rac, Cdc42, TC10, and so on. Rho is categorized into RhoA, B, and C. The Rho family GTPases exhibit guanine nucleotide-binding activity and function as molecular switches by cycling between an inactive guanosine diphosphate (GDP)-bound form and an active GTP-bound form. Rho participates in the regulation of actin cytoskeletons, cell adhesions, cytokinesis, smooth muscle contraction, cell morphology, cell motility, neurite retraction, and polarity formation through their specific effectors. The characterization of these effectors has begun to clarify how Rho regulates some phenotypes. This article focuses on the roles of RhoA/C and their effectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, K., H. Shimokawa, K. Morikawa, T. Uwatoku, K. Oi, Y. Matsumoto, T. Hattori, Y. Nakashima, K. Kaibuchi, K. Sueishi, and A. Takeshit. 2004. Long-term treatment with a Rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res. 94:385–93.

    Article  CAS  PubMed  Google Scholar 

  • Adamson, P., C.J. Marshall, A. Hall, and P.A. Tilbrook. 1992. Post-translational modifications of p21rho proteins. J Biol Chem. 267:20033–8.

    CAS  PubMed  Google Scholar 

  • Algrain, M., O. Turunen, A. Vaheri, D. Louvard, and M. Arpin. 1993. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cell Biol. 120:129–39.

    Article  CAS  PubMed  Google Scholar 

  • Amano, M., K. Chihara, K. Kimura, Y. Fukata, N. Nakamura, Y. Matsuura, and K. Kaibuchi. 1997. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 275:1308–11.

    Article  CAS  PubMed  Google Scholar 

  • Amano, M., K. Chihara, N. Nakamura, Y. Fukata, T. Yano, M. Shibata, M. Ikebe, and K. Kaibuchi. 1998. Myosin II activation promotes neurite retraction during the action of Rho and Rho-kinase. Genes Cells. 3:177–88.

    Article  CAS  PubMed  Google Scholar 

  • Amano, M., M. Ito, K. Kimura, Y. Fukata, K. Chihara, T. Nakano, Y. Matsuura, and K. Kaibuchi. 1996a. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 271:20246–9.

    Article  CAS  PubMed  Google Scholar 

  • Amano, M., M. Ito, K. Kimura, Y. Fukata, K. Chihara, T. Nakano, Y. Matsuura, and K. Kaibuchi. 1996b. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 271:20246–9.

    Article  CAS  PubMed  Google Scholar 

  • Amano, M., H. Mukai, Y. Ono, K. Chihara, T. Matsui, Y. Hamajima, K. Okawa, A. Iwamatsu, and K. Kaibuchi. 1996c. Identification of a putative target for Rho as a serinethreonine kinase, PKN. Science. 271:648–50.

    CAS  PubMed  Google Scholar 

  • Arimura, N., N. Inagaki, K. Chihara, C. Menager, N. Nakamura, M. Amano, A. Iwamatsu, Y. Goshima, and K. Kaibuchi. 2000. Phosphorylation of collapsin response mediator protein-2 by rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem. 275:23973–80.

    Article  CAS  PubMed  Google Scholar 

  • Arpin, M., M. Algrain, and D. Louvard. 1994. Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Curr Opin Cell Biol. 6:136–41.

    Article  CAS  PubMed  Google Scholar 

  • Billuart, P., T. Bienvenu, N. Ronce, V. des Portes, M.C. Vinet, R. Zemni, H. Roest Crollius, A. Carrie, F. Fauchereau, M. Cherry, S. Briault, B. Hamel, J.P. Fryns, C. Beldjord, A. Kahn, C. Moraine, and J. Chelly. 1998. Oligophrenin-1 encodes a rhoGAP protein involved in X-linked mental retardation. Nature. 392:923–6.

    Article  CAS  PubMed  Google Scholar 

  • Bito, H., T. Furuyashiki, H. Ishihara, Y. Shibasaki, K. Ohashi, K. Mizuno, M. Maekawa, T. Ishizaki, and S. Narumiya. 2000. A critical role for a Rho-associated kinase, p160ROCK, in determining axon outgrowth in mammalian CNS neurons. Neuron. 26:431–41.

    Article  CAS  PubMed  Google Scholar 

  • Bowman, E.P., D.J. Uhlinger, and J.D. Lambeth. 1993. Neutrophil phospholipase D is activated by a membrane-associated Rho family small molecular weight GTP-binding protein. J Biol Chem. 268:21509–12.

    CAS  PubMed  Google Scholar 

  • Bradley, A.B., and K.G. Morgan. 1987. Alterations in cytoplasmic calcium sensitivity during porcine coronary artery contractions as detected by aequorin. J Physiol. 385:437–48.

    CAS  PubMed  Google Scholar 

  • Bretscher, A., D. Reczek, and M. Berryman. 1997. Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J Cell Sci. 110:3011–8.

    CAS  PubMed  Google Scholar 

  • Brouns, M.R., S.F. Matheson, K.Q. Hu, I. Delalle, V.S. Caviness, J. Silver, R.T. Bronson, and J. Settleman. 2000. The adhesion signaling molecule p190 RhoGAP is required for morphogenetic processes in neural development. Development. 127:4891–903.

    CAS  PubMed  Google Scholar 

  • Brouns, M.R., S.F. Matheson, and J. Settleman. 2001. p190 RhoGAP is the principal Src substrate in brain and regulates axon outgrowth, guidance and fasciculation. Nat Cell Biol. 3:361–7.

    Article  CAS  PubMed  Google Scholar 

  • Camera, P., J.S. da Silva, G. Griffiths, M.G. Giuffrida, L. Ferrara, V. Schubert, S. Imarisio, L. Silengo, C.G. Dotti, and F. Di Cunto. 2003. Citron-N is a neuronal Rho-associated protein involved in Golgi organization through actin cytoskeleton regulation. Nat Cell Biol. 5:1071–8.

    Article  CAS  PubMed  Google Scholar 

  • Cerione, R.A., and Y. Zheng. 1996. The Dbl family of oncogenes. Curr Opin Cell Biol. 8:216–22.

    Article  CAS  PubMed  Google Scholar 

  • Chihara, K., M. Amano, N. Nakamura, T. Yano, M. Shibata, T. Tokui, H. Ichikawa, R. Ikebe, M. Ikebe, and K. Kaibuchi. 1997. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem. 272:25121–7.

    Article  CAS  PubMed  Google Scholar 

  • Chong, L.D., A. Traynor-Kaplan, G.M. Bokoch, and M.A. Schwartz. 1994. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell. 79:507–13.

    Article  CAS  PubMed  Google Scholar 

  • Di Cunto, F., S. Imarisio, E. Hirsch, V. Broccoli, A. Bulfone, A. Migheli, C. Atzori, E. Turco, R. Triolo, G.P. Dotto, L. Silengo, and F. Altruda. 2000. Defective neurogenesis in citron kinase knockout mice by altered cytokinesis and massive apoptosis. Neuron. 28:115–27.

    Article  PubMed  Google Scholar 

  • Drechsel, D.N., A.A. Hyman, A. Hall, and M. Glotzer. 1997. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr Biol. 7:12–23.

    Article  CAS  PubMed  Google Scholar 

  • English, D., Y. Cui, and R.A. Siddiqui. 1996. Messenger functions of phosphatidic acid. Chem Phys Lipids. 80:117–32.

    Article  CAS  PubMed  Google Scholar 

  • Essler, M., M. Amano, H.J. Kruse, K. Kaibuchi, P.C. Weber, M. Aepfelbacher. 1998. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem. 272:21867–74.

    Article  Google Scholar 

  • Etienne-Manneville, S. 2004. Cdc42-the centre of polarity. J Cell Sci. 117:1291–300.

    Article  CAS  PubMed  Google Scholar 

  • Etienne-Manneville, S., and A. Hall. 2002. Rho GTPases in cell biology. Nature. 420:629–35.

    Article  CAS  PubMed  Google Scholar 

  • Fishkind, D.J., and Y.L. Wang. 1995. New horizons for cytokinesis. Curr Opin Cell Biol. 7:23–31.

    Article  CAS  PubMed  Google Scholar 

  • Fukata, M., M. Nakagawa, and K. Kaibuchi. 2003. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr Opin Cell Biol. 15:590–7.

    Article  CAS  PubMed  Google Scholar 

  • Fukata, Y., M. Amano, and K. Kaibuchi. 2001. Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 22:32–9.

    Article  CAS  PubMed  Google Scholar 

  • Fukata, Y., K. Kimura, N. Oshiro, H. Saya, Y. Matsuura, and K. Kaibuchi. 1998. Association of the myosin-binding subunit of myosin phosphatase and moesin: dual regulation of moesin phosphorylation by Rho-associated kinase and myosin phosphatase. J Cell Biol. 141:409–18.

    Article  CAS  PubMed  Google Scholar 

  • Fukata, Y., N. Oshiro, N. Kinoshita, Y. Kawano, Y. Matsuoka, V. Bennett, Y. Matsuura, and K. Kaibuchi. 1999. Phosphorylation of adducin by Rho-kinase plays a crucial role in cell motility. J Cell Biol. 145:347–61.

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto, Y., K. Kaibuchi, Y. Hori, H. Fujioka, S. Araki, T. Ueda, A. Kikuchi, and Y. Takai. 1990. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. Oncogene. 5:1321–8.

    CAS  PubMed  Google Scholar 

  • Garrett, M., A.J. Self, C. van Oers, A. Hall. 1989. Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins. J Biol Chem. 264:10–13.

    CAS  PubMed  Google Scholar 

  • Gary, R., and A. Bretscher. 1995. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol Biol Cell. 6:1061–75.

    CAS  PubMed  Google Scholar 

  • Giuliano, K.A., and D.L. Taylor. 1995. Measurement and manipulation of cytoskeletal dynamics in living cells. Curr Opin Cell Biol. 7:4–12.

    Article  CAS  PubMed  Google Scholar 

  • Gong, M.C., K. Iizuka, G. Nixon, J.P. Browne, A. Hall, J.F. Eccleston, M. Sugai, S. Kobayashi, A.V. Somlyo, and A.P. Somlyo. 1996. Role of guanine nucleotide-binding proteins—ras-family or trimeric proteins or both—in Ca2+ sensitization of smooth muscle. Proc Natl Acad Sci U S A. 93:1340–5.

    Article  CAS  PubMed  Google Scholar 

  • Goto, H., H. Kosako, K. Tanabe, M. Yanagida, M. Sakurai, M. Amano, K. Kaibuchi, and M. Inagaki. 1998. Phosphorylation of vimentin by rho-associated kinase at a unique amino-terminal site that is specifically phosphorylated during cytokinesis. J Biol Chem. 273:11728–36.

    Article  CAS  PubMed  Google Scholar 

  • Gundersen, G.G. 2002. Evolutionary conservation of microtubule-capture mechanisms. Nat Rev Mol Cell Biol. 3:296–304.

    Article  CAS  PubMed  Google Scholar 

  • Gundersen, G.G., E.R. Gomes, and Y. Wen. 2004. Cortical control of microtubule stability and polarization. Curr Opin Cell Biol. 16:106–12.

    Article  CAS  PubMed  Google Scholar 

  • Hall, A. 1998. Rho GTPases and the actin cytoskeleton. Science. 279:509–14.

    Article  CAS  PubMed  Google Scholar 

  • Hart, M.J., X. Jiang, T. Kozasa, W. Roscoe, W.D. Singer, A.G. Gilman, P.C. Sternweis, and G. Bollag. 1998. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by Galpha13. Science. 280:2112–4.

    Article  CAS  PubMed  Google Scholar 

  • Hartshorne, D.J. 1987. Biochemistry of the contractile process in smooth muscle. In Physiology of the Gastrointestinal tract. D.R. Johnson, editor. Raven Press, New York. 423–482.

    Google Scholar 

  • Hartshorne, D.J., M. Ito, and F. Erdodi. 1998. Myosin light chain phosphatase: subunit composition, interactions and regulation. J Muscle Res Cell Motil. 19:325–41.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, T., H. Shimokawa, M. Higashi, J. Hiroki, Y. Mukai, K. Kaibuchi, and A. Takeshita. 2004a. Long-term treatment with a specific Rho-kinase inhibitor suppresses cardiac allograft vasculopathy in mice. Circ Res. 94:46–52.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, T., H. Shimokawa, M. Higashi, J. Hiroki, Y. Mukai, H. Tsutsui, K. Kaibuchi, and A. Takeshita. 2004b. Long-term inhibition of Rho-kinase suppresses left ventricular remodeling after myocardial infarction in mice. Circulation. 109(18):2234–9.

    Article  CAS  PubMed  Google Scholar 

  • Hirata, K., A. Kikuchi, T. Sasaki, S. Kuroda, K. Kaibuchi, Y. Matsuura, H. Seki, K. Saida, and Y. Takai. 1992. Involvement of rho p21 in the GTP-enhanced calcium ion sensitivity of smooth muscle contraction. J Biol Chem. 267:8719–22.

    CAS  PubMed  Google Scholar 

  • Hirose, K., T. Kawashima, I. Iwamoto, T. Nosaka, and T. Kitamura. 2001. MgcRacGAP is involved in cytokinesis through associating with mitotic spindle and midbody. J Biol Chem. 276:5821–8.

    Article  CAS  PubMed  Google Scholar 

  • Hirose, M., T. Ishizaki, N. Watanabe, M. Uehata, O. Kranenburg, W.H. Moolenaar, F. Matsumura, M. Maekawa, H. Bito, and S. Narumiya. 1998. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol. 141:1625–36.

    Article  CAS  PubMed  Google Scholar 

  • Homma, Y., and Y. Emori. 1995. A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities. EMBO J. 14:286–91.

    CAS  PubMed  Google Scholar 

  • Huttenlocher, A., R.R. Sandborg, and A. Horwitz. 1995. Adhesion in cell migration. Curr Opin Cell Biol. 7:697–706.

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki, T., M. Maekawa, K. Fujisawa, K. Okawa, A. Iwamatsu, A. Fujita, N. Watanabe, Y. Saito, A. Kakizuka, N. Morii, and S. Narumiya. 1996. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 15:1885–93.

    CAS  PubMed  Google Scholar 

  • Ishizaki, T., M. Naito, K. Fujisawa, M. Maekawa, N. Watanabe, Y. Saito, and S. Narumiya. 1997. p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett. 404:118–24.

    Article  CAS  PubMed  Google Scholar 

  • Isomura, M., A. Kikuchi, N. Ohga, Y. Takai. 1991. Regulation of binding of rhoB p20 to membranes by its specific regulatory protein, GDP dissociation inhibitor. Oncogene. 6:119–24.

    CAS  PubMed  Google Scholar 

  • Ito, K., Y. Hirooka, K. Sakai, T. Kishi, K. Kaibuchi, H. Shimokawa, and A. Takeshita. 2003. Rho/Rho-kinase pathway in brain stem contributes to blood pressure regulation via sympathetic nervous system: possible involvement in neural mechanisms of hypertension. Circ Res. 92:1337–43.

    Article  CAS  PubMed  Google Scholar 

  • Jalink, K., and W.H. Moolenaar. 1992. Thrombin receptor activation causes rapid neural cell rounding and neurite retraction independent of classic second messengers. J Cell Biol. 118:411–19.

    Article  CAS  PubMed  Google Scholar 

  • Jalink, K., E.J. van Corven, T. Hengeveld, N. Morii, S. Narumiya, and W.H. Moolenaar. 1994. Inhibition of lysophosphatidate-and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol. 126:801–10.

    Article  CAS  PubMed  Google Scholar 

  • Janmey, P. 1994. Phosphoinositides and calcium as regulators of cellular actin assembly and disassembly. Annu Rev Physiol. 56:169–91.

    CAS  PubMed  Google Scholar 

  • Jin, Z., and S.M. Strittmatter. 1997. Rac1 mediates collapsin-1-induced growth cone collapse. J Neurosci. 17:6256–63.

    CAS  PubMed  Google Scholar 

  • Kaibuchi, K., S. Kuroda, and M. Amano. 1999. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annu Rev Biochem. 68:459–86.

    Article  CAS  PubMed  Google Scholar 

  • Kamm, K.E., and J.T. Stull. 1985. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol. 25:593–603.

    Article  CAS  PubMed  Google Scholar 

  • Katayama, M., M. Kawata, Y. Yoshida, H. Horiuchi, T. Yamamoto, Y. Matsuura, and Y. Takai. 1991. The posttranslationally modified C-terminal structure of bovine aortic smooth muscle rhoA p21. J Biol Chem. 266:12639–45.

    CAS  PubMed  Google Scholar 

  • Katoh, H., J. Aoki, A. Ichikawa, and M. Negishi. 1998. p160 RhoA-binding kinase ROKalpha induces neurite retraction. J Biol Chem. 273:2489–92.

    Article  CAS  PubMed  Google Scholar 

  • Kawano, Y., Y. Fukata, N. Oshiro, M. Amano, T. Nakamura, F. Matsumura, M. Inagaki, and K. Kaibuchi. 1999. Phosphorylation of myosin-binding subunit (MBS) of myosin phosphatase by Rho-kinase in vivo. 147:1023–38.

    CAS  Google Scholar 

  • Kimura, K., Y. Fukata, Y. Matsuoka, V. Bennett, Y. Matsuura, K. Okawa, A. Iwamatsu, and K. Kaibuchi. 1998. Regulation of the association of adducin with actin filaments by rho-associated kinase (Rho-kinase) and myosin phosphatase. J Biol Chem. 273:5542–8.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, K., M. Ito, M. Amano, K. Chihara, Y. Fukata, M. Nakafuku, B. Yamamori, J. Feng, T. Nakano, K. Okawa, A. Iwamatsu, and K. Kaibuchi. 1996. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 273:245–8.

    CAS  PubMed  Google Scholar 

  • Kishi, K., T. Sasaki, S. Kuroda, T. Itoh, and Y. Takai. 1993. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol. 120:1187–95.

    Article  CAS  PubMed  Google Scholar 

  • Kohno, H., K. Tanaka, A. Mino, M. Umikawa, H. Imamura, T. Fujiwara, Y. Fujita, K. Hotta, H. Qadota, T. Watanabe, Y. Ohya, and Y. Takai. 1996. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15:6060–8.

    CAS  PubMed  Google Scholar 

  • Kosako, H., M. Amano, M. Yanagida, K. Tanabe, Y. Nishi, K. Kaibuchi, and M. Inagaki. 1997. Phosphorylation of glial fibrillary acidic protein at the same sites by cleavage furrow kinase and Rho-associated kinase. J Biol Chem. 272:10333–6.

    Article  CAS  PubMed  Google Scholar 

  • Kozasa, T., X. Jiang, M.J. Hart, P.M. Sternweis, W.D. Singer, A.G. Gilman, G. Bollag, and P.C. Sternweis. 1998. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science. 280:2109–11.

    Article  CAS  PubMed  Google Scholar 

  • Kozma, R., S. Sarner, S. Ahmed, and L. Lim. 1997. Rho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid. Mol Cell Biol. 17:1201–11.

    CAS  PubMed  Google Scholar 

  • Kureishi, Y., S. Kobayashi, M. Amano, K. Kimura, H. Kanaide, T. Nakano, K. Kaibuchi, and M. Ito. 1997. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 272:12257–60.

    Article  CAS  PubMed  Google Scholar 

  • Kuribara, H., K. Tago, T. Yokozeki, T. Sasaki, Y. Takai, N. Morii, S. Narumiya, T. Katada, and Y. Kanaho. 1995. Synergistic activation of rat brain phospholipase D by ADP-ribosylation factor and rhoA p21, and its inhibition by Clostridium botulinum C3 exoenzyme. J Biol Chem. 270:25667–71.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster, C.A., P.M. Taylor-Harris, A.J. Self, S. Brill, H.E. van Erp, and A. Hall. 1994. Characterization of rhoGAP. A GTPase-activating protein for rho-related small GTPases. J Biol Chem. 269:1137–42.

    CAS  PubMed  Google Scholar 

  • Leonard, D., M.J. Hart, J.V. Platko, A. Eva, W. Henzel, T. Evans, and R.A. Cerione. 1992. The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. J Biol Chem. 267:22860–8.

    CAS  PubMed  Google Scholar 

  • Leung, T., X.Q. Chen, E. Manser, and L. Lim. 1996. The p160 RhoA-binding kinase ROKa is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol. 16:5313–27.

    CAS  PubMed  Google Scholar 

  • Leung, T., E. Manser, L. Tan, and L. Lim. 1995. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 270:29051–4.

    Article  CAS  PubMed  Google Scholar 

  • Mabuchi, I., Y. Hamaguchi, H. Fujimoto, N. Morii, M. Mishima, and S. Narumiya. 1993. A rho-like protein is involved in the organisation of the contractile ring in dividing sand dollar eggs. Zygote. 1:325–31.

    Article  CAS  PubMed  Google Scholar 

  • Mackay, D.J., F. Esch, H. Furthmayr, and A. Hall. 1997. Rho-and rac-dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J Cell Biol. 138:927–38.

    Article  CAS  PubMed  Google Scholar 

  • Madaule, P., M. Eda, N. Watanabe, K. Fujisawa, T. Matsuoka, H. Bito, T. Ishizaki, and S. Narumiya. 1998. Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature. 394:491–4.

    Article  CAS  PubMed  Google Scholar 

  • Madaule, P., T. Furuyashiki, T. Reid, T. Ishizaki, G. Watanabe, N. Morii, and S. Narumiya. 1995. A novel partner for the GTP-bound forms of rho and rac. FEBS Lett. 377:243–8.

    Article  CAS  PubMed  Google Scholar 

  • Maekawa, M., T. Ishizaki, S. Boku, N. Watanabe, A. Fujita, A. Iwamatsu, T. Obinata, K. Ohashi, K. Mizuno, and S. Narumiya. 1999. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 285:895–8.

    Article  CAS  PubMed  Google Scholar 

  • Malcolm, K.C., A.H. Ross, R.G. Qiu, M. Symons, and J.H. Exton. 1994. Activation of rat liver phospholipase D by the small GTP-binding protein RhoA. J Biol Chem. 269:25951–4.

    CAS  PubMed  Google Scholar 

  • Martin, M., C. Andreoli, A. Sahuquet, P. Montcourrier, M. Algrain, and P. Mangeat. 1995. Ezrin NH2-terminal domain inhibits the cell extension activity of the COOH-terminal domain. J Cell Biol. 128:1081–93.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, T., M. Amano, T. Yamamoto, K. Chihara, M. Nakafuku, M. Ito, T. Nakano, K. Okawa, A. Iwamatsu, and K. Kaibuchi. 1996. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 15:2208–16.

    CAS  PubMed  Google Scholar 

  • Matsui, T., M. Maeda, Y. Doi, S. Yonemura, M. Amano, K. Kaibuchi, S. Tsukita, and S. Tsukita. 1998. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J Cell Biol. 140:647–57.

    Article  CAS  PubMed  Google Scholar 

  • Matsui, T., S. Yonemura, and S. Tsukita. 1999. Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol. 9:1259–62.

    Article  CAS  PubMed  Google Scholar 

  • Matsumura, F., S. Ono, Y. Yamakita, G. Totsukawa, and S. Yamashiro. 1998. Specific localization of serine 19 phosphorylated myosin II during cell locomotion and mitosis of cultured cells. J Cell Biol. 140:119–29.

    Article  CAS  PubMed  Google Scholar 

  • Mitchison, T.J., and L.P. Cramer. 1996. Actin-based cell motility and cell locomotion. Cell. 84:371–9.

    Article  CAS  PubMed  Google Scholar 

  • Moon, S.Y., and Y. Zheng. 2003. Rho GTPase-activating proteins in cell regulation. Trends Cell Biol. 13:13–22.

    Article  CAS  PubMed  Google Scholar 

  • Mukai, H., and Y. Ono. 1994. A novel protein kinase with leucine zipper-like sequences: its catalytic domain is highly homologous to that of protein kinase C. Biochem Biophys Res Commun. 199:897–904.

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa, O., K. Fujisawa, T. Ishizaki, Y. Saito, K. Nakao, and S. Narumiya. 1996. ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 392:189–193.

    Article  CAS  PubMed  Google Scholar 

  • Nakai, K., Y. Suzuki, H. Kihira, H. Wada, M. Fujioka, M. Ito, T. Nakano, K. Kaibuchi, H. Shiku, and M. Nishikawa. 1997. Regulation of myosin phosphatase through phosphorylation of the myosin-binding subunit in platelet activation. Blood. 90:3936–42.

    CAS  PubMed  Google Scholar 

  • Nishiki, T., S. Narumiya, N. Morii, M. Yamamoto, M. Fujiwara, Y. Kamata, G. Sakaguchi, and S. Kozaki. 1990. ADP-ribosylation of the rho/rac proteins induces growth inhibition, neurite outgrowth and acetylcholine esterase in cultured PC-12 cells. Biochem Biophys Res Commun. 167:265–72.

    Article  CAS  PubMed  Google Scholar 

  • Nishiyama, T., T. Sasaki, K. Takaishi, M. Kato, H. Yaku, K. Araki, Y. Matsuura, and Y. Takai. 1994. rac p21 is involved in insulin-induced membrane ruffling and rho p21 is involved in hepatocyte growth factor-and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced membrane ruffling in KB cells. Mol Cell Biol. 14:2447–56.

    CAS  PubMed  Google Scholar 

  • Noda, M., C. Yasuda-Fukazawa, K. Moriishi, T. Kato, T. Okuda, K. Kurokawa, and Y. Takuwa. 1995. Involvement of rho in GTP gamma S-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Lett. 367:246–50.

    Article  CAS  PubMed  Google Scholar 

  • Oshiro, N., Y. Fukata, and K. Kaibuchi. 1998. Phosphorylation of moesin by rho-associated kinase (Rho-kinase) plays a crucial role in the formation of microvilli-like structures. J Biol Chem. 273:34663–6.

    Article  CAS  PubMed  Google Scholar 

  • Paterson, H.F., A.J. Self, M.D. Garrett, I. Just, K. Aktories, and A. Hall. 1990. Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol. 111:1001–7.

    Article  CAS  PubMed  Google Scholar 

  • Pestonjamasp, K., M.R. Amieva, C.P. Strassel, W.M. Nauseef, H. Furthmayr, and E.J. Luna. 1995. Moesin, ezrin, and p205 are actin-binding proteins associated with neutrophil plasma membranes. Mol Biol Cell. 6:247–59.

    CAS  PubMed  Google Scholar 

  • Reid, T., T. Furuyashiki, T. Ishizaki, G. Watanabe, N. Watanabe, K. Fujisawa, N. Morii, P. Madaule, and S. Narumiya. 1996. Rhotekin, a new putative target for Rho bearing homology to a serine/threonine kinase, PKN, and rhophilin in the rho-binding domain. J Biol Chem. 271:13556–60.

    Article  CAS  PubMed  Google Scholar 

  • Reinhard, J., A.A. Scheel, D. Diekmann, A. Hall, C. Ruppert, and M. Bahler. 1995. A novel type of myosin implicated in signalling by rho family GTPases. EMBO J. 14:697–704.

    CAS  PubMed  Google Scholar 

  • Ren, X.D., G.M. Bokoch, A. Traynor-Kaplan, G.H. Jenkins, R.A. Anderson, and M.A. Schwartz. 1996. Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells. Mol Biol Cell. 7:435–42.

    CAS  PubMed  Google Scholar 

  • Ridley, A.J., P.M. Comoglio, and A. Hall. 1995. Regulation of scatter factor/hepatocyte growth factor responses by Ras, Rac, and Rho in MDCK cells. Mol Cell Biol. 15:1110–22.

    CAS  PubMed  Google Scholar 

  • Ridley, A.J., and A. Hall. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell. 70:389–99.

    Article  CAS  PubMed  Google Scholar 

  • Riento, K., and A.J. Ridley. 2003. Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol. 4:446–56.

    Article  CAS  PubMed  Google Scholar 

  • Schmidt, A., and A. Hall. 2002. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16:1587–609.

    Article  CAS  PubMed  Google Scholar 

  • Sellers, J.R., and R.S. Adelstein. 1987. Regulation of contractile activity. In The Enzymes. Vol. 18. P. Boyer and E.G. Erevs, editors. Academic Press, San Diego. 381–418.

    Google Scholar 

  • Settleman, J., C.F. Albright, L.C. Foster, and R.A. Weinberg. 1992. Association between GTPase activators for Rho and Ras families. Nature. 359:153–4.

    Article  CAS  PubMed  Google Scholar 

  • Shamah, S.M., M.Z. Lin, J.L. Goldberg, S. Estrach, M. Sahin, L. Hu, M. Bazalakova, R.L. Neve, G. Corfas, A. Debant, and M.E. Greenberg. 2001. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell. 105:233–44.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, R.J., M. Henry, F. Solomon, and T. Jacks. 1998. RhoA-dependent phosphorylation and relocalization of ERM proteins into apical membrane/actin protrusions in fibroblasts. Mol Biol Cell. 9:403–19.

    CAS  PubMed  Google Scholar 

  • Singer, W.D., Brown H.A., Sternweis, P.C. 1997. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev. Biochem. 66:475–509.

    Article  CAS  PubMed  Google Scholar 

  • Singer, W.D., H.A. Brown, G.M. Bokoch, and P.C. Sternweis. 1995. Resolved phospholipase D activity is modulated by cytosolic factors other than Arf. J Biol Chem. 270:14944–50.

    Article  CAS  PubMed  Google Scholar 

  • Small, J.V., B. Geiger, I. Kaverina, and A. Bershadsky. 2002. How do microtubules guide migrating cells? Nat Rev Mol Cell Biol. 3:957–64.

    Article  CAS  PubMed  Google Scholar 

  • Sordella, R., M. Classon, K.Q. Hu, S.F. Matheson, M.R. Brouns, B. Fine, L. Zhang, H. Takami, Y. Yamada, and J. Settleman. 2002. Modulation of CREB activity by the Rho GTPase regulates cell and organism size during mouse embryonic development. Dev Cell. 2:553–65.

    Article  CAS  PubMed  Google Scholar 

  • Stossel, T.P. 1993. On the crawling of animal cells. Science. 260:1086–94.

    CAS  PubMed  Google Scholar 

  • Swiercz, J.M., R. Kuner, J. Behrens, and S. Offermanns. 2002. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron. 35:51–63.

    Article  CAS  PubMed  Google Scholar 

  • Takai, Y., T. Sasaki, K. Tanaka, and H. Nakanishi. 1995. Rho as a regulator of the cytoskeleton. Trends Biochem Sci. 20:227–231.

    Article  CAS  PubMed  Google Scholar 

  • Takaishi, K., T. Sasaki, T. Kameyama, S. Tsukita, S. Tsukita, and Y. Takai. 1995. Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell-cell adhesion sites and cleavage furrows. Oncogene. 11:39–48.

    CAS  PubMed  Google Scholar 

  • Takaishi, K., T. Sasaki, M. Kato, W. Yamochi, S. Kuroda, T. Nakamura, M. Takeichi, and Y. Takai. 1994. Involvement of Rho p21 small GTP-binding protein and its regulator in the HGF-induced cell motility. Oncogene. 9:273–279.

    CAS  PubMed  Google Scholar 

  • Tamagnone, L., and P.M. Comoglio. 2000. Signalling by semaphorin receptors: cell guidance and beyond. Trends Cell Biol. 10:377–83.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka, E., and J. Sabry. 1995. Making the connection: cytoskeletal rearrangements during growth cone guidance. Cell. 83:171–6.

    Article  CAS  PubMed  Google Scholar 

  • Taya, S., N. Inagaki, H. Sengiku, H. Makino, A. Iwamatsu, I. Urakawa, K. Nagao, S. Kataoka, and K. Kaibuchi. 2001. Direct interaction of insulin-like growth factor-1 receptor with leukemia-associated RhoGEF. J Cell Biol. 155:809–20.

    Article  CAS  PubMed  Google Scholar 

  • Tessier-Lavigne, M., and C.S. Goodman. 1996. The molecular biology of axon guidance. Science. 274:1123–33.

    Article  CAS  PubMed  Google Scholar 

  • Theriot, J., and L.L. Satterwhite. 1997. New wrinkles in cytokinesis. Nature. 385:388–9.

    Article  CAS  PubMed  Google Scholar 

  • Tominaga, T., K. Sugie, M. Hirata, N. Morii, J. Fukata, A. Uchida, H. Imura, and S. Narumiya. 1993. Inhibition of PMA-induced, LFA-1-dependent lymphocyte aggregation by ADP ribosylation of the small molecular weight GTP binding protein, rho. J Cell Biol. 120:1529–37.

    Article  CAS  PubMed  Google Scholar 

  • Tsukita, S., Y. Hieda, and S. Tsukita. 1989. A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J Cell Biol. 108:2369–82.

    Article  CAS  PubMed  Google Scholar 

  • Tsukita, S., K. Oishi, N. Sato, J. Sagara, A. Kawai, and S. Tsukita. 1994. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J Cell Biol. 126:391–401.

    Article  CAS  PubMed  Google Scholar 

  • Tsukita, S., S. Yonemura, and S. Tsukita. 1997. ERM proteins: head-to-tail regulation of actin-plasma membrane interaction. Trends Biochem Sci. 22:53–8.

    Article  CAS  PubMed  Google Scholar 

  • Turunen, O., T. Wahlstrom, and A. Vaheri. 1994. Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family. J Cell Biol. 126:1445–53.

    Article  CAS  PubMed  Google Scholar 

  • Ueda, T., Kikuchi A, Ohga N, Yamamoto J, Takai Y. 1990. Purification and characterization from bovine brain cytosol of a novel regulatory protein inhibiting the dissociation of GDP from and the subsequent binding of GTP to rhoB p20, a ras p21-like GTP-binding protein. J Biol Chem. 265:9373–80.

    CAS  PubMed  Google Scholar 

  • Van Aelst, L., and C. D'Souza-Schorey. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322.

    PubMed  Google Scholar 

  • Vincent, S., and J. Settleman. 1997. The PRK2 kinase is a potential effector target of both Rho and Rac GTPases and regulates actin cytoskeletal organization. Mol Cell Biol. 17:2247–56.

    CAS  PubMed  Google Scholar 

  • Wahl, S., H. Barth, T. Ciossek, K. Aktories, and B.K. Mueller. 2000. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol. 149:263–70.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, G., Y. Saito, P. Madaule, T. Ishizaki, K. Fujisawa, N. Morii, H. Mukai, Y. Ono, A. Kakizuka, and S. Narumiya. 1996. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science. 271:645–8.

    CAS  PubMed  Google Scholar 

  • Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. 1999. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol. 1:136–43.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe, N., P. Madaule, T. Reid, T. Ishizaki, G. Watanabe, A. Kakizuka, Y. Saito, K. Nakao, B.M. Jockusch, and S. Narumiya. 1997. p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J. 16:3044–56.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, A.K., G. Gorgas, W.D. Claypool, and P. de Lanerolle. 1991. An increase or a decrease in myosin II phosphorylation inhibits macrophage motility. J Cell Biol. 114:277–83.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., F. Wang, A. Van Keymeulen, P. Herzmark, A. Straight, K. Kelly, Y. Takuwa, N. Sugimoto, T. Mitchison, and H.R. Bourne. 2003. Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell. 114:201–14.

    Article  CAS  PubMed  Google Scholar 

  • Yamada, K., and S. Miyamoto. 1995. Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol. 7:681–9.

    Article  CAS  PubMed  Google Scholar 

  • Yamashiro, S., G. Totsukawa, Y. Yamakita, Y. Sasaki, P. Madaule, T. Ishizaki, S. Narumiya, and F. Matsumura. 2003. Citron kinase, a Rho-dependent kinase, induces diphosphorylation of regulatory light chain of myosin II. Mol Biol Cell. 14:1745–56.

    Article  CAS  PubMed  Google Scholar 

  • Yasuda, S., F. Oceguera-Yanez, T. Kato, M. Okamoto, S. Yonemura, Y. Terada, T. Ishizaki, and S. Narumiya. 2004. Cdc42 and mDia3 regulate microtubule attachment to kinetochores. Nature. 428:767–71.

    Article  CAS  PubMed  Google Scholar 

  • Yasui, Y., M. Amano, K. Nagata, N. Inagaki, H. Nakamura, H. Saya, K. Kaibuchi, and M. Inagaki. 1998. Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J Cell Biol. 143:1249–58.

    Article  CAS  PubMed  Google Scholar 

  • Zigmond, S.H. 1996. Signal transduction and actin filament organization. Curr Opin Cell Biol. 8:66–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Kawano, Y., Kaneko-Kawano, T., Yoshimura, T., Kawabata, S., Kaibuchi, K. (2005). RhoA/C and the Actin Cytoskeleton. In: Manser, E. (eds) RHO Family GTPases. Proteins and Cell Regulation, vol 3. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3462-8_6

Download citation

Publish with us

Policies and ethics