Skip to main content

The Role of Chemokine Receptors, in Particular CXCR4, in Lymphoma and Carcinoma Metastasis

  • Chapter
  • 513 Accesses

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

Abstract

Chemokines are small proteins that regulate leukocyte trafficking. They are important for development of tumors, because many chemokines are produced by tumor cells and attract leukocytes that contribute to malignancy. In addition, chemokines also act directly on tumor cells. In particular CXCL12 (SDF-1), and its receptor CXCR4, are required for metastasis of lymphoma and carcinoma cells. CXCL12 triggers invasion of lymphoma cells into tissues, in line with its role in leukocyte migration. Surprisingly, we found that CXCR4 is not required for invasion by carcinoma cells, but instead is essential at later stages, to promote outgrowth of micrometastases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C., Trent, J.M., Staudt, L.M., Hudson, J., Boguski, M.S., Lashkari, D., Shalon, D., Botstein, D., and Brown, P.O., 1999, The transcriptional program in the response of human fibroblasts to serum. Science, 283:83–87.

    Article  PubMed  Google Scholar 

  2. Dvorak, H.F., 1986, Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med, 315:1650–1659.

    PubMed  Google Scholar 

  3. Moser, B., and Loetscher, P., 2001, Lymphocyte traffic control by chemokines. Nat Immunol, 2:123–128.

    Article  PubMed  Google Scholar 

  4. Schall, T.J., 1994, The Chemokines. In The Cytokine Handbook, 419–460. Thomson, A., ed, Academic Press, New York, USA.

    Google Scholar 

  5. Murphy, P.M., Baggiolini, M., Charo, I.F., Hebert, C.A., Horuk, R., Matsushima, K., Miller, L.H., Oppenheim, J.J. and Power, C.A., 2000, International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev, 52:145–176.

    PubMed  Google Scholar 

  6. Zlotnik, A. and Yoshie, O., 2000, Chemokines: a new classification system and their role in immunity. Immunity, 12:121–127.

    Article  Google Scholar 

  7. Murdoch, C. and Finn, A., 2000, Chemokine receptors and their role in inflammation and infectious diseases. Blood, 95:3032–3043.

    PubMed  Google Scholar 

  8. Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., and Honjo, T., 1993, Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science, 261: 600–603.

    PubMed  Google Scholar 

  9. Zeelenberg, I.S., Ruuls-Van Stalle, L., Roos, E., 2003, The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res, 63: 3833–3839.

    PubMed  Google Scholar 

  10. Zeelenberg, I.S., Ruuls-Van Stalle, L., and Roos, E., 2001, Retention of CXCR4 in the endoplasmic reticulum blocks dissemination of a T cell hybridoma. J Clin Invest, 108: 269–277.

    Article  PubMed  Google Scholar 

  11. Förster, R., Mattis, A.E., Kremmer, E., Wolf, E., Brem, G. and Lipp, M., 1996, A putative chemokine peceptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell, 87:1037–1047.

    Article  PubMed  Google Scholar 

  12. Förster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Müller, I., Wolf, E., and Lipp, M., 1999, CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell, 99:23–33.

    Article  PubMed  Google Scholar 

  13. Negus, R.P., Stamp, G.W., Relf, M.G., Burke, F., Malik, S.T., Bernasconi, S., Allavena, P., Sozzani, S., Mantovani, A., and Balkwill, F.R., 1995, The detection and localization of monocyte chemoattractant protein-1 (MCP-1) in human ovarian cancer. J Clin Invest, 95:2391–2396.

    PubMed  Google Scholar 

  14. Robinson, S.C., Scott, K.A., Wilson, J.L., Thompson, R.G., Proudfoot, A.E., and Balkwill, F.R., 2003, A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Res, 63:8360–8365.

    PubMed  Google Scholar 

  15. Lin, E.Y., Nguyen, A.V., Russell, R.G., and Pollard, J.W., 2001, Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med, 193:727–740.

    Article  PubMed  Google Scholar 

  16. Coussens, L.M., Tinkle, C.L., Hanahan, D., and Werb, Z., 2000, MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103:481–490.

    Article  Google Scholar 

  17. Mian, B.M., Dinney, C.P., Bermejo, C.E., Sweeney, P., Tellez, C., Yang, X.D., Gudas, J.M., McConkey, D.J., and Bar-Eli, M., 2003, Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clin Cancer Res, 9:3167–3175.

    PubMed  Google Scholar 

  18. Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X.D., Gudas, J.M., and Bar-Eli, M., 2002, Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol, 161:125–134.

    PubMed  Google Scholar 

  19. Schadendorf, D., Moller, A., Algermissen, B., Worm, M., Sticherling, M., and Czarnetzki, B.M., 1993, IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol, 151:2667–2675.

    PubMed  Google Scholar 

  20. Kershaw, M.H., Wang, G., Westwood, J.A., Pachynski, R.K., Tiffany, H.L., Marincola, F.M., Wang, E., Young, H.A., Murphy, P.M., and Hwu, P., 2002, Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther, 13:1971–1980.

    Article  Google Scholar 

  21. Jordan, N.J., Kolios, G., Abbot, S.E., Sinai, M.A., Thompson, D.A., Petraki, K., and Westwick, J., 1999, Expression of functional CXCR4 chemokine receptors on human colonic epithelial cells. J Clin Invest, 104:1061–1069.

    PubMed  Google Scholar 

  22. Balkwill, F., 2003, Chemokine biology in cancer. Semin Immunol, 15:49–55.

    Article  Google Scholar 

  23. Müller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M.E., McClanahan, T., Murphy, E., Yuan, W., Wagner, S.N., Barrera, J.L., Mohar, A., Verastegui, E., and Zlotnik, A., 2001, Involvement of chemokine receptors in breast cancer metastasis. Nature, 410:50–56.

    Article  PubMed  Google Scholar 

  24. Taichman, R.S., Cooper, C., Keller, E.T., Pienta, K.J., Taichman, N.S., and McCauley, L.K., 2002, Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res, 62:1832–1837.

    PubMed  Google Scholar 

  25. Scotton, C.J., Wilson, J.L., Milliken, D., Stamp, G., and Balkwill, F.R., 2001, Epithelial cancer cell migration: a role for chemokine receptors?. Cancer Res, 61:4961–4965.

    PubMed  Google Scholar 

  26. Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I.P., and Ben Baruch, A., 2001, A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol, 167:4747–4757.

    PubMed  Google Scholar 

  27. Libura, J., Drukala, J., Majkam M,, Tomescu, O., Navenot, J.M., Kucia, M., Marquez, L., Peiper, S.C., Barr, F.G., Janowska-Wieczorek, A., and Ratajczak, M.Z., 2002, CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 100:2597–2606.

    Article  Google Scholar 

  28. Luca, M., Huang, S., Gershenwald, J.E., Singh, R.K., Reich, R., Bar-Eli, M., 1997, Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. Am J Pathol, 151:1105–1113.

    PubMed  Google Scholar 

  29. Payne, A.S., and Cornelius, L.A., 2002, The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol, 118:915–922.

    Article  PubMed  Google Scholar 

  30. Li, A., Dubey, S., Varney, M.L., Dave, B.J., and Singh, R.K., 2003, IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol, 170:3369–3376.

    PubMed  Google Scholar 

  31. Kitadai, Y., Haruma, K., Mukaida, N., Ohmoto, Y., Matsutani, N., Yasui, W., Yamamoto, S., Sumii, K., Kajiyama, G., Fidler, I.J., and Tahara, E., 2000, Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin Cancer Res, 6:2735–2740.

    PubMed  Google Scholar 

  32. Li, A., Varney, M.L., and Singh, R.K., 2001, Expression of interleukin 8 and its receptors in human colon carcinoma cells with different metastatic potentials. Clin Cancer Res 7:3298–3304.

    PubMed  Google Scholar 

  33. Kuwada, Y., Sasaki, T., Morinaka, K., Kitadai, Y., Mukaida, N., and Chayama, K., 2003, Potential involvement of IL-8 and its receptors in the invasiveness of pancreatic cancer cells. Int J Oncol, 22:765–771.

    PubMed  Google Scholar 

  34. Mashino, K., Sadanaga, N., Yamaguchi, H., Tanaka, F., Ohta, M., Shibuta, K., Inoue, H., and Mori, M., 2002, Expression of chemokine receptor CCR7 is associated with lymph node metastasis of gastric carcinoma. Cancer Res, 62:2937–2941.

    PubMed  Google Scholar 

  35. Ding, Y., Shimada, Y., Maeda, M., Kawabe, A., Kaganoi, J., Komoto, I., Hashimoto, Y., Miyake, M., Hashida, H., and Imamura, M., 2003, Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma. Clin Cancer Res, 9:3406–3412.

    PubMed  Google Scholar 

  36. Takanami, I., 2003, Overexpression of CCR7 mRNA in non-small cell lung cancer: correlation with lymph node metastasis. Int J Cancer, 105:186–189.

    Article  PubMed  Google Scholar 

  37. Loetscher, M., Geiser, T., O'Reilly, T., Zwahlen, R., Baggiolini, M., and Moser, B., 1994, Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J Biol Chem, 269:232–237.

    PubMed  Google Scholar 

  38. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R.E., Hill, C.M., Davis, C.B., Peiper, S.C., Schall, T.J., Littman, D.R., and Landau, N.R., 1996, Identification of a major co-receptor for primary isolates of HIV-1. Nature, 381:661–666.

    Article  Google Scholar 

  39. Feng, Y., Broder, C.C., Kennedy, P.E., and Berger, E.A., 1996, HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science, 272:872–877.

    PubMed  Google Scholar 

  40. Bleul, C.C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., and Springer, T.A., 1996, The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature, 382:829–833.

    Article  PubMed  Google Scholar 

  41. Oberlin, E., Amara, A., Bachelerie, F., Bessia, C., Virelizier, J.L., Arenzana-Seisdedos, F., Schwartz, O., Heard, J.M., Clark-Lewis, I., Legler, D.F., Loetscher, M., Baggiolini, M., and Moser, B., 1996, The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 382:833–835.

    Article  PubMed  Google Scholar 

  42. Nagasawa, T., Kikutani, H., and Kishimoto, T., 1994, Molecular cloning and structure of a pre-B-cell growth-stimulating factor. Proc Natl Acad Sci U.S.A, 91:2305–2309.

    PubMed  Google Scholar 

  43. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I., and Littman, D.R., 1998, Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 393:595–599.

    Article  PubMed  Google Scholar 

  44. Sozzani, S., Luini, W., Borsatti, A., Polentarutti, N., Zhou, D., Piemonti, L., D'Amico, G., Power, C.A., Wells, T.N., Gobbi, M., Allavena, P., and Mantovani, A., 1997, Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol, 159:1993–2000.

    PubMed  Google Scholar 

  45. Bleul, C.C., Wu, L., Hoxie, J.A., Springer, T.A., and Mackay, C.R., 1997, The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U.S.A., 94:1925–1930.

    Article  PubMed  Google Scholar 

  46. Murdoch, C., Monk, P.N., and Finn, A., 1999, Functional expression of chemokine receptor CXCR4 on human epithelial cells. Immunology, 98:36–41.

    Article  PubMed  Google Scholar 

  47. Deichmann, M., Kronenwett, R., and Haas, R., 1997, Expression of the human immunodeficiency virus type-1 coreceptors CXCR-4 (fusin, LESTR) and CKR-5 in CD34+ hematopoietic progenitor cells. Blood, 89:3522–3528.

    PubMed  Google Scholar 

  48. Hesselgesser, J., Halks-Miller, M., DelVecchio, V., Peiper, S.C., Hoxie, J., Kolson, D.L., Taub, D., and Horuk, R., 1997, CD4-independent association between HIV-1 gp120 and CXCR4: functional chemokine receptors are expressed in human neurons. Curr Biol, 7:112–121.

    Article  PubMed  Google Scholar 

  49. Wang, J.F., Liu, Z.Y., and Groopman, J.E., 1998, The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood, 92:756–764.

    PubMed  Google Scholar 

  50. Zaitseva, M., Blauvelt, A., Lee, S., Lapham, C.K., Klaus-Kovtun, V., Mostowski, H., Manischewitz, J., and Golding, H., 1997, Expression and function of CCR5 a nd CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Nat Med, 3:1369–1375.

    Article  PubMed  Google Scholar 

  51. Gupta, S.K., Lysko, P.G., Pillarisetti, K., Ohlstein, E., and Stadel, J.M., 1998, Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem, 273:4282–4287.

    Article  Google Scholar 

  52. Ma, Q., Jones, D., Borghesani, P.R., Segal, R.A., Nagasawa, T., Kishimoto, Bronson, R.T., and Springer, T.A., 1998, Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4 and SDF-1-deficient mice. Proc Natl Acad Sci U.S.A., 95:9448–9453.

    Article  PubMed  Google Scholar 

  53. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T., 1996, Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382:635–638.

    Article  PubMed  Google Scholar 

  54. Tachibana, K., Hirota, S., Iizasa, H., Yoshida, H., Kawabata, K., Kataoka, Y., Kitamura, Y., Matsushima, K., Yoshida, N., Nishikawa, S., Kishimoto, T., and Nagasawa, T., 1998, The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature, 393:591–594.

    Article  PubMed  Google Scholar 

  55. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., Nagler, A., Ben Hur, H., Many, A., Shultz, L., Lider, O., Alon, R., Zipori, D., and Lapidot, T., 1999, Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science, 283:845–848.

    Article  PubMed  Google Scholar 

  56. Molyneaux, K.A., Zinszner, H., Kunwar, P.S., Schaible, K., Stebler, J., Sunshine, M.J., O'Brien, W., Raz, E., Littman, D., Wylie, C., and Lehmann, R., 2003, The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development, 130:4279–4286.

    Article  PubMed  Google Scholar 

  57. Ara, T., Nakamura, Y., Egawa, T., Sugiyama, T., Abe, K., Kishimoto, T., Matsui, Y., and Nagasawa. T., 2003, Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine, stromal cell-derived factor-1 (SDF-1). Proc Natl Acad Sci U.S.A., 100:5319–5323.

    Article  Google Scholar 

  58. Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., Esguerra, C.V., Leung, T., and Raz, E., 2002, Guidance of primordial germ cell migration by the chemokine SDF-1. Cell, 111:647–659.

    PubMed  Google Scholar 

  59. Knaut, H., Werz, C., Geisler, R., and Nusslein-Volhard, C., 2003, A zebrafish homologue of the chemokine receptor Cxcr4 is a germ-cell guidance receptor. Nature, 421:279–282.

    Article  PubMed  Google Scholar 

  60. Klein, R.S., Rubin, J.B., Gibson, H.D., De Haan, E.N., Alvarez-Hernandez, X., Segal, R.A., and Luster, A.D., 2001, SDF-1 alpha induces chemotaxis and enhances Sonic hedgehog-induced proliferation of cerebellar granule cells. Development, 128:1971–1981.

    PubMed  Google Scholar 

  61. Lataillade, J.J., Clay, D., Dupuy, C., Rigal, S., Jasmin, C., Bourin, P., and Bousse-Kerdiles, M.C., 2000, Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood, 95:756–768.

    PubMed  Google Scholar 

  62. Kijima, T., Maulik, G., Ma, P.C., Tibaldi, E.V., Turner, R.E., Rollins, B., Sattler, M., Johnson, B.E., and Salgia, R., 2002, Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res, 62:6304–6311.

    PubMed  Google Scholar 

  63. Scotton, C.J., Wilson, J.L., Scott, K., Stamp, G., Wilbanks, G.D., Fricker, S., Bridger, G., and Balkwill, F.R., 2002, Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res, 62:5930–5938.

    PubMed  Google Scholar 

  64. Barbero, S., Bonavia, R., Bajetto, A., Porcile, C., Pirani, P., Ravetti, J.L., Zona, G.L., Spaziante, Florio, R.T., and Schettini, G., 2003, Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res, 63:1969–1974.

    PubMed  Google Scholar 

  65. La Rivière, G., Schipper, C., Collard, J.G., and Roos, E., 1988, Invasiveness in hepatocyte and fibroblast monolayers and metastatic potential of T-cell hybridomas in mice. Cancer Res. 48:3405–3410

    PubMed  Google Scholar 

  66. Soede, R.D.M., Wijnands, Y.M., Van Kouteren-Cobzaru, I., and Roos, E., 1998, ZAP-70 tyrosine kinase is required for LFA-1-dependent T-cell migration and invasion. J Cell Biol, 142:1371–1379.

    Article  PubMed  Google Scholar 

  67. Soede, R.D.M., Zeelenberg, I.S., Wijnands, Y.M., Kamp, M., and Roos, E., 2001, SDF-1-induced LFA-1 activation during T-lymphoma dissemination requires Gq/11, RhoA and myosin, as well as Gi and Cdc42. J Immunol, 166:4293–4301.

    PubMed  Google Scholar 

  68. Stroeken, P.J.M., Van Rijthoven, E.A., Van der Valk, M.A., and Roos, E., 1998, Targeted disruption of the beta-1 integrin gene in a lymphoma cell line greatly reduces metastatic capacity. Cancer Res, 58:1569–1577.

    PubMed  Google Scholar 

  69. Soede, R.D.M., Wijnands, Y.M., Kamp, M., Van der Valk, M.A., and Roos, E., 2000, Gi and Gq/11 proteins are involved in dissemination of myeloid leukemia cells to liver and spleen, whereas bone marrow colonization involves Gq/11 but not Gi. Blood, 96: 691–698.

    PubMed  Google Scholar 

  70. Chen, J.D., Bai, X., Yang A.G., Cong, Y., and Chen, S.Y., 1997, Inactivation of HIV-1 chemokine coreceptor CXCR-4 by a novel intrakine strategy. Nature Med, 3: 1110–1116.

    Article  Google Scholar 

  71. Kang, Y., Siegel, P.M., Shu, W., Drobnjak, M., Kakonen, S.M/, Cordon-Cardo, C., Guise, T.A., and Massagué, J. 2003, A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3:537–549.

    Article  PubMed  Google Scholar 

  72. Cardones, A.R., Murakami, T., and Hwang, S.T., 2003, CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta-1 integrin. Cancer Res, 63:6751–6757.

    PubMed  Google Scholar 

  73. Fidler, I.J., 1970, Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst, 45:773–782.

    PubMed  Google Scholar 

  74. Liotta, L.A., Vembu, D., Saini, R.K., and Boone, C., 1978, In vivo monitoring of the death rate of artificial murine pulmonary micrometastases. Cancer Res, 38:1231–1236.

    PubMed  Google Scholar 

  75. Staller, P., Sulitkova, J., Lisztwan, J., Moch, H., Oakeley, E.J., and Krek, W., 2003, Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature, 425:307–311.

    Article  PubMed  Google Scholar 

  76. Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S.K., Doni, A., Rapisarda, A., Bernasconi, S., Saccani, S., Nebuloni, M., Vago, L., Mantovani, A., Melillo, G., and Sica, A., 2003, Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med, 198:1391–1402.

    Article  Google Scholar 

  77. Kijowski, J., Baj-Krzyworzeka, M., Majka, M., Reca, R., Marquez, L.A., Christofidou-Solomidou, M., Janowska-Wieczorek, A., and Ratajczak, M.Z., 2001, The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells, 19:453–466.

    Article  Google Scholar 

  78. Tilton, B., Ho, L., Oberlin, E., Loetscher, P., Baleux, F., Clark-Lewis, I., and Thelen, M., 2000, Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor 1 stimulates prolonged protein kinase B and extracellular signal-regulated kinase 2 activation in T lymphocytes. J Exp Med, 92:313–324.

    Article  Google Scholar 

  79. Del Corno, M., Liu, Q.H., Schols, D., De Clerq, E., Gessani, S., Freedman, B.D. and Collman, R.G., 2001, HIV-1 gp120 and chemokine activation of Pyk2 and mitogen-activated protein kinases in primary macrophages mediated by calcium-dependent, pertussis toxin-insensitive chemokine receptor signaling. Blood, 98:2909–2916.

    Article  PubMed  Google Scholar 

  80. Doranz, B.J., Grovit-Ferbas, K., Sharron, M.P., Mao, S.H., Goetz, M.B., Daar, E.S., Doms, R.W., and O'Brien, W.A., 1997, A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 co-receptor. J Exp Med 186:1395–1400.

    Article  PubMed  Google Scholar 

  81. Donzella, G.A., Schols, D., Lin, S.W., Este, J.A., Nagashima, K.A., Maddon, P.J., Allaway, G.P., Sakmar, T.P., Henson, G., De Clercq, E., and Moore, J.P., 1998, AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nature Med, 4:72–77.

    Article  PubMed  Google Scholar 

  82. Hendrix, C.W., Flexner, C., MacFarland, R.T., Giandomenico, C., Fuchs, E.J., Redpath, E., Bridger, G., and Henson, G.W., 2000, Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR4 chemokine receptor, in human volunteers. Antimicrob Agents Chemother, 44:1667–1673.

    Article  Google Scholar 

  83. Doranz, B.J., Filion, L.G., Diaz-Mitoma, F., Sitar, D.S. Sahai, J., Baribaud, F., Orsini, M.J., Benovic, J.L., Cameron, W., Doms, R.W., 2001, Safe use of the CXCR4 inhibitor ALX40-4C in humans. AIDS Res. Hum. Retroviruses, 17: 475–486.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Zeelenberg, I., Roos, E. (2005). The Role of Chemokine Receptors, in Particular CXCR4, in Lymphoma and Carcinoma Metastasis. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_13

Download citation

Publish with us

Policies and ethics