Skip to main content

Towards a quantum evolutionary scheme: Violating Bell’s inequalities in language

  • Chapter
Book cover Evolutionary Epistemology, Language and Culture

Part of the book series: Theory and Decision Library A: ((TDLA,volume 39))

Abstract

We show the presence of genuine quantum structures in human language. The neo-Darwinian evolutionary scheme is founded on a probability structure that satisfies the Kolmogorovian axioms, and as a consequence cannot incorporate quantum-like evolutionary change. In earlier research we revealed quantum structures in processes taking place in conceptual space. We argue that the presence of quantum structures in language and the earlier detected quantum structures in conceptual change make the neo-Darwinian evolutionary scheme strictly too limited for Evolutionary Epistemology. We sketch how we believe that evolution in a more general way should be implemented in epistemology and conceptual change, but also in biology, and how this view would lead to another relation between both biology and epistemology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Accardi, L. 1984. “The probabilistic roots of the quantum mechanical paradoxes.” In: Diner, S.; Fargue, D.; Lochak, G., and Selleri, F. (eds.), The wave-particle dualism 47–55. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Aerts, D. 1982. “Example of a macroscopical situation that violates Bell inequalities.” Lettere al Nuovo Cimento 34: 107–111.

    Article  Google Scholar 

  • Aerts, D. 1986. “A possible explanation for the probabilities of quantum mechanics.” Journal of Mathematical Physics 27: 202–210.

    Article  Google Scholar 

  • Aerts, D. 1995. “Quantum structures: An attempt to explain their appearance in nature.” International Journal of Theoretical Physics 34: 1165–1186.

    Article  Google Scholar 

  • Aerts, D.; and Aerts, S. 1994. “Applications of quantum statistics in psychological studies of decision processes.” Foundations of Science 1: 85–97.

    Google Scholar 

  • Aerts, D.; and Aerts, S. 1997. “Application of quantum statistics in psychological studies of decision processes.” In: van Fraassen, B.C. (ed.), Topics in the foundation of statistics 92–104. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Aerts, D.; Aerts, S.; Broekaert, J., et al. 2000. “The violation of Bell inequalities in the macroworld.” Foundations of Physics 30: 1387–1414.

    Article  Google Scholar 

  • Aerts, D.; Apostel, L.; De Moor, B., et al. 1995. Perspectives on the world, an interdisciplinary reflection. Brussels: VUBPress.

    Google Scholar 

  • Aerts, D.; and Czachor, M. 2004. “Quantum aspects of semantic analysis and symbolic artificial intelligence.” Journal of Physics A-Mathematical and General 37: L123–L132.

    Article  Google Scholar 

  • Aerts, D.; Czachor, M.; Gabora, L., et al. 2003. “Quantum morphogenesis: A variation on Thom’s catastrophe theory.” Physical Review E 67: 051926-1–051926-13.

    Article  Google Scholar 

  • Aerts, D.; and D’Hooghe, B. 2005. “Potentiality states: Quantum versus classical emergence.” Foundations of Science, in press.

    Google Scholar 

  • Aerts, D.; and Gabora, L. 2005a. “A theory of concepts and their combinations I: The structure of the sets of contexts and properties.” Kybernetes 34: 151–175.

    Google Scholar 

  • Aerts, D.; and Gabora, L. 2005b. “A theory of concepts and their combinations II: A Hilbert space representation.” Kybernetes 34: 176–205.

    Google Scholar 

  • Apostel, L. 1995. “The unfinished symphony: Positions, agreements, disagreements and gaps.” In: The worldviews group (ed.), Perspectives on the world: An interdisciplinary reflection 219–239. Brussel: VUBPress.

    Google Scholar 

  • Aspect, A. 1999. “Bell’s inequality test: More ideal than ever.” Nature 398: 189–190.

    Article  Google Scholar 

  • Bell, J.S. 1964. “On the Einstein-Podolski-Rosen paradox.” Physics 1: 195–200.

    Google Scholar 

  • Bell, J.S. 1966. “On the problem of hidden variables in quantum mechanics.” Reviews of Modern Physics 38: 447–452.

    Article  Google Scholar 

  • Blei, D.M.; Ng, A.Y.; and Jordan, M.I. 2003. “Latent Dirichlet allocation.” Journal of Machine Learning Research 3: 993–1022.

    Article  Google Scholar 

  • Clauser, J.F.; and Shimony, A. 1978. “Bell’s theorem: Experimental tests and implications.” Reports on Progress in Physics 41: 1881–1926.

    Article  Google Scholar 

  • Czachor, M. 1992. “On classical models of spin.” Foundations of Physics Letters 3: 249–264.

    Article  Google Scholar 

  • Czachor, M.; and Naudts, J. 2002. “Thermostatistics based on Kolmogorov-Nagumo averages: Unifying framework for extensive and nonextensive generalizations.” Physics Letters A 298:369–374.

    Article  Google Scholar 

  • Deerwester, S.; Dumais, S.T.; Furnas, G.W., et al. 1990. “Indexing by Latent Semantic Analysis.” Journal of the American Society of Information Science 41: 391–407.

    Article  Google Scholar 

  • Doob, J.L. 1953. Stochastic processes. New York: John Wiley and Sons.

    Google Scholar 

  • Einstein, A.; Podolsky, B.; and Rosen, N. 1935. “Can quantum-mechanical description of physical reality be considered complete.” Physical Review 47: 777–780.

    Article  Google Scholar 

  • Fodor, J. 1994. “Concepts: A potboiler.” Cognition 50: 95–113.

    Article  Google Scholar 

  • Foulis, D.J.; and Randall, C.H. 1972. “Operational statistics I.” Journal of Mathematical Physics 13: 1667–1675.

    Article  Google Scholar 

  • Gabora, L.; and Aerts, D. 2002a. “Contextualizing concepts.” Proceedings of the 15th international FLAIRS conference, special track: Categorization and concept representation: Models and implications 148–152. Pensacola Florida, May 14–17, American Association for Artificial Intelligence.

    Google Scholar 

  • Gabora, L.; and Aerts, D. 2002b. “Contextualizing concepts using a mathematical generalization of the quantum formalism.” Journal of Experimental and Theoretical Artificial Intelligence 14: 327–358.

    Article  Google Scholar 

  • Griffiths, T.L.; and Steyvers, M. 2004. “Finding scientific topics.” Proceedings of the National Academy of Sciences 101: 5228–5523.

    Article  Google Scholar 

  • Gudder, S.P. 1988. Quantum probability. San Diego: Academic Press.

    Google Scholar 

  • Gudder, S.P. 1968. “Hidden variables in quantum mechanics reconsidered.” Reviews of Modern Physics 40: 229–231.

    Article  Google Scholar 

  • Hampton, J. 1997. “Conceptual combination.” In: Lamberts, K.; and Shanks, D. (eds.), Knowledge, concepts, and categories 133–159. Hove: Psychology Press.

    Google Scholar 

  • Heit, E.; and Barsalou, L. 1996. “The instantiation principle in natural language categories.” Memory 4: 413–451.

    Article  Google Scholar 

  • Hofmann, T. 1999. “Probabilistic latent semantic analysis.” In: Laskey, K.B.; and Prade, H. (eds.), Proceedings of the fifteenth conference on uncertainty in artificial intelligence UAI’99 289–296. San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Hoppensteadt, F.C. 1982. Mathematical methods of population biology. Cambridge: University Press.

    Google Scholar 

  • Jauch, J.M.; and Piron, C. 1963. “Can hidden variables be excluded in quantum mechanics.” Helvetica Physica Acta 38: 827–837.

    Google Scholar 

  • Kamp, H.; and Partee, B. 1995. “Prototype theory and compositionality.” Cognition 57: 129–191.

    Article  Google Scholar 

  • Kochen, S.; and Specker, E.P. 1967. “The problem of hidden variables in quantum mechanics.” Journal of Mathematical Mechanics 17: 59–87.

    Google Scholar 

  • Kolmogorov, A.N. 1950. Foundations of the theory of probability. New York: Chelsea.

    Google Scholar 

  • Komatsu, L.K. 1992. “Recent views on conceptual structure.” Psychological Bulletin 112:500–526.

    Article  Google Scholar 

  • Landauer, T.K. 2002. “On the computational basis of learning and cognition: Arguments from LSA.” In: Ross, B.H. (ed.), Psychology of learning and motivation, vol. 41: 43–84. New York: Academic Press.

    Google Scholar 

  • Landauer, T.K.; and Dumais, S.T. 1997. “A solution of Plato’s problem: The latent semantic analysis theory of the acquisition, induction, and representation of knowledge.” Psychological Review 104: 211–240.

    Article  Google Scholar 

  • Landauer, T.K.; Foltz, P.W.; and Laham, D. 1998. “Introduction to latent semantic analysis.” Discourse Processes 25: 259–284.

    Article  Google Scholar 

  • Landauer, T.K.; Laham, D.; and Foltz, P.W. 1998. “Learning human-like knowledge by singular value decomposition: A progress report.” Advances in Neural Information Processing Systems 10: 45–51.

    Google Scholar 

  • Lund, K.; and Burgess, C. 1996. “Producing high-dimensional semantic spaces from lexical co-occurrence.” Behavior Research Methods, Instruments and Computers 28: 203–208.

    Google Scholar 

  • Markov, A.A. 1906. “Rasprostranenie zakona bol’shih chisel na velichiny, zavisyaschie drug ot druga.” Izvestiya Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 2-ya seriya 15: 135–156.

    Google Scholar 

  • Montemurro, M.A. 2001. “Beyond Zipf-Mandelbrot law in quantitative linguistics.” Physica A 300: 563–578.

    Google Scholar 

  • Neumann, J.V. 1932. Mathematische grundlagen der quanten-mechanik. Berlin: Springer-Verlag.

    Google Scholar 

  • Nosofsky, R. 1988. “Exemplar-based accounts of relations between classification, recognition, and typicality.” Journal of Experimental Psychology: Learning, Memory, and Cognition 14:700–708.

    Article  Google Scholar 

  • Nosofsky, R. 1992. “Exemplars, prototypes, and similarity rules.” In: Healy, A.F.; Kosslyn, S.M.; and Shiffrin, R.M. (eds.), From learning theory to connectionist theory: Essays in honor of William K. Estes 149–168. Hillsdale NJ: Lawrence Erlbaum.

    Google Scholar 

  • Osherson, D.N.; and Smith, E.E. 1981. “On the adequacy of prototype theory as a theory of concepts.” Cognition 9: 35–58.

    Article  Google Scholar 

  • Osherson, D.N.; and Smith, E.E. 1982. “Gradedness and conceptual combination.” Cognition 9: 35–58.

    Article  Google Scholar 

  • Pitowsky, I. 1989. Quantum probability—quantum logic, Lecture Notes in Physics 321. Berlin: Springer-Verlag.

    Google Scholar 

  • Plate, T.A. 2003. Holographic reduced representation: Distributed representation for cognitive structures. Stanford: CSLI Publications.

    Google Scholar 

  • Rips, L.J. 1995. “The current status of research on concept combination.” Mind and Language 10: 72–104.

    Google Scholar 

  • Rosch, E. 1975. “Cognitive representations of semantic categories.” Journal of Experimental Psychology: General 104: 192–232.

    Article  Google Scholar 

  • Rosch, E. 1978. “Principles of categorization.” In: Rosch, E.; and Lloyd, B.B. (eds.), Cognition and categorization 27–48. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Rosch, E. 1983. “Prototype classification and logical classification: The two systems.” In: Scholnick, E.K. (ed.), New trends in conceptual representation: Challenges to Piaget’s theory? 73–86. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Rosch, E.; and Mervis, C.B. 1975. “Family resemblances: Studies in the internal structure of categories.” Cognitive Psychology 7: 573–605.

    Article  Google Scholar 

  • Smith, E.E.; and Medin, D.L. 1981. Categories and concepts. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Smolensky, P. 1990. “Tensor product variable binding and the representation of symbolic structures in connectionist systems.” Artificial Intelligence 46: 159–216.

    Article  Google Scholar 

  • Widdows, D.; and Peters, S. 2003. “Word vectors and quantum logic: Experimentswith negation and disjunction.” In: Proceedings of the eighth mathematics of language conference 141–154. Bloomington, Indiana.

    Google Scholar 

  • Zadeh, L. 1982. “A note on prototype theory and fuzzy sets.” Cognition 12: 291–297.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Aerts, D., Czachor, M., D’Hooghe, B. (2006). Towards a quantum evolutionary scheme: Violating Bell’s inequalities in language. In: Gontier, N., Van Bendegem, J.P., Aerts, D. (eds) Evolutionary Epistemology, Language and Culture. Theory and Decision Library A:, vol 39. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3395-8_20

Download citation

Publish with us

Policies and ethics