Skip to main content

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. Hough, J.S.; Briggs, D.E.; Stevens, R. and Young, T.W. (1982) Malting and Brewing Science — Volume 2: Hopped wort and beer. Chapman and Hall, London.

    Google Scholar 

  2. Wellhoener, H.J. (1954) Ein Kontinuierliches Gär-und Reifungsverfahren für Bier. Brauwelt 94(1): 624–626.

    Google Scholar 

  3. Coutts, M.W. (1957) A continuous process for the production of beer. U.K. Patents 872,391-400.

    Google Scholar 

  4. Bishop, L.R. (1970) A system of continuous fermentations. J. Inst. Brew. 76: 172–181.

    Google Scholar 

  5. Thorne, R.S.W. (1968) Continuous fermentation in retrospect. Brew. Dig. 43(2): 50–55.

    Google Scholar 

  6. Groboillot, A.; Boardi, D.K.; Poncelet, D. and Neufeld, R.J. (1994) Immobilization of cells for application in the food industry. Crit. Rev. Biotechnol. 14: 75–107.

    PubMed  CAS  Google Scholar 

  7. Keshavarz, T.; Bucke, C. and Lilly, M.D. (1996) Problems in scale-up of immobilized cell cultures. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized cells: basics and applications. Elsevier, Amsterdam; pp. 505–510.

    Google Scholar 

  8. Masschelein, C.A.; Ryder, D.S. and Simon, J.-P. (1994) Immobilized cell technology in beer production. Crit. Rev. Biotechnol. 14: 155–177.

    CAS  Google Scholar 

  9. Willaert, R. (1996) Immobilised cell technology for the production of beverages and foods. Proc. of International Workshop on Bioencapsulation. Bioencapsulation Research Group, Postam, Germany; Talk 9, pp. 1–4.

    Google Scholar 

  10. Karel, S.F.; Libicki, S.B. and Robertson, C.R. (1985) The immobilization of whole cells: engineering principles. Chem. Eng. Sci. 40: 1321–1353.

    Article  CAS  Google Scholar 

  11. Willaert, R. and Baron, G.V. (1996) Gel entrapment and micro-encapsulation: methods, applications and engineering principles. Rev. Chem. Eng. 12: 1–205.

    CAS  Google Scholar 

  12. Nedović, V.A.; Obradović, B.; Leskošek-Čukalović, I. and Vunjak-Novaković, G. (2001) Immobilized yeast bioreactor systems for brewing-recent achievements. In: Thonart, Ph. and Hofman, M. (Eds.) Focus on Biotechnology Series, Vol. 4: Engineering and Manufacturing for Biotechnology. Kluwer Academic Publishers, Dordrecht; pp. 277–292.

    Google Scholar 

  13. Pilkington, H.; Maragaritis, A.; Mensour, N. and Russell, I. (1998) Fundamentals of immobilised yeast cell for continuous beer fermentation: a review. J. Inst. Brew. 104: 19–31.

    Google Scholar 

  14. Lommi, H. (1990) Immobilized yeast for maturation and alcohol-free beer, Brew. Dist. Int. 5: 22–23.

    Google Scholar 

  15. Willaert, R.; Van De Winkel, L. and De Vuyst, L. (1999) Improvement of maltose and maltotriose brewery fermentation efficiency using immobilized cell technology. Proc. of the 27th European Brewery Convention Congress. EBC; pp. 663–670.

    Google Scholar 

  16. Linko, M. and Kronlöf, J. (1991) Main fermentation with immobilized yeast. In: Proc. of the 23rd European Brewery Convention Congress. EBC; pp. 353–360.

    Google Scholar 

  17. Collin, S.; Montesinos, M.; Meersman, E.; Swinkels, W. and Dufour, J.P. (1991) Yeast dehydrogenase activities in relation to carbonyl compounds removal from wort and beer. In: Proc. of the 23rd European Brewery Convention Congress. EBC; pp. 409–416.

    Google Scholar 

  18. Pittner, H.; Back, W.; Swinkels, W.; Meersman, E.; Van Dieren, B. and Lomni, H. (1993) Continuous production of acidified wort for alcohol-free-beer with immobilized lactic acid bacteria. In: Proc. of the 24th European Brewery Convention Congress. EBC; pp. 323–329.

    Google Scholar 

  19. Meersman, E. (1994) Biologische aanzuring met geïmmobiliseerde melkzuurbacteriën. Cerevisia Biotechnol 19(4): 42–46.

    CAS  Google Scholar 

  20. Pajunen, E. (1995) Immobilized yeast lager beer maturation: DEAE-cellulose at Synebrychoff. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 24–40.

    Google Scholar 

  21. Van Dieren, D. (1995) Yeast metabolism and the production of alcohol-free beer. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 66–76.

    Google Scholar 

  22. Cashin, M.M. (1996) Comparative studies of five supports for yeast immobilisation by adsorption/attachment. J. Inst. Brew. 102: 5–10.

    Google Scholar 

  23. Wackerbauer, K.; Fitzner, M. and Günther, J. (1996) Technisch-technologische Möglichkeiten mit immobilisierter Hefe. Brauwelt 45: 2140–2150.

    Google Scholar 

  24. Wackerbauer, K.; Fitzner, M. and Lopsien, M. (1996) Untersuchungen mit dem neuen MPI-Bioreaktor-System. Brouwelt 46/47: 2250–2256.

    Google Scholar 

  25. Wackerbauer, K.; Ludwig, A.; Mohle, J. and Legrand, J. (2003) Measures to improve long term stability of main fermentation with immobilized yeast. Proc. of the 29th European Brewery Convention Congress. EBC; pp. 1–11.

    Google Scholar 

  26. Ludwig, A. and Wackerbauer, K. (2004) Quality improvement in continuous main fermentation with immobilized yeast. In: World Brewing Congress 2004 Proceedings, July 24–28, San Diego, California; ASBC and MBAA, ISBN: 0-9718255-5-6, CD Rom; O-81.

    Google Scholar 

  27. Van Iersel, M.F.M.; Meersman, E.; Arntz, M.; Ronbouts, F.M. and Abee, T. (1998) Effect of environmental conditions on flocculation and immobilization of brewer’s yeast during production of alcohol-free beer. J. Inst. Brew. 104: 131–136.

    Google Scholar 

  28. Van Iersel, M.F.; Brouwer-Post, E.; Rombouts, F.M. and Abee, T. (2000) Influence of yeast immobilization on fermentation and aldehyde reduction during the production of alcohol-free beer. Enzyme Microb. Technol. 26: 602–607.

    Article  PubMed  Google Scholar 

  29. Andersen, K.; Bergin, J.; Ranta, B. and Viljava, T. (1999) New process for the continuous fermentation of beer. In: Proceedings of the 27th European Brewery Convention Congress. EBC; pp. 771–778.

    Google Scholar 

  30. Bardi, E.; Koutinas, A.A. and Kanellaki, M. (1997) Room and low temperature brewing with yeast immobilized on gluten pellets. Process Biochem. 32: 691–696.

    Article  CAS  Google Scholar 

  31. Bekatorou, A.; Koutinas, A.A.; Psarianos, K. and Kanellaki, M. (2001) Low-temperature brewing by freeze-dried immobilized cells on gluten pellets. J. Agric. Food Chem. 49: 373–377.

    Article  PubMed  CAS  Google Scholar 

  32. Onaka, T.; Nakanishi, K.; Inoue, T. and Kubo, S. (1985) Beer brewing with immobilized yeast. Bio/Technol. 3: 467–470.

    Article  CAS  Google Scholar 

  33. Shindo, S.; Sahara, H. and Koshino, S. (1994) Suppression of α-acetolactate formation in brewing with immobilized yeast. J. Inst. Brew. 100: 69–72.

    CAS  Google Scholar 

  34. Nedović, V.; Obradović, B.; Vunjak-Novaković, G. and Leskošek-Čukalović, I. (1993) Kinetics of beer fermentation with immobilized yeast cells in an internal loop air-lift bioreactor. Chem. Ind. 47: 168–172.

    Google Scholar 

  35. Nedović, V.A.; Leskošek-Čukalović, I. and Vunjak-Novaković, G. (1996) Short-time fermentation of beer in an immobilized yeast air-lift bioreactor. In: Proc. 24th Conv. Inst. Brew., Singapore, Winetitles, Adelaide; p. 245.

    Google Scholar 

  36. Nedović, V.A.; Leskošek-Čukalović, I.; Milošević, V. and Vunjak-Novaković, G. (1997) Flavour formation during beer fermentation with immobilized Saccharomyces cerevisiae in a gas-lift bioreactor. In: Godia, F. and Poncelet, D. (Eds.) Proc. Int. Workshop Bioencapsulation VI: “From fundamentals to industrial applications”, Barcelona, Spain; T5.3, pp. 1–4.

    Google Scholar 

  37. Nedović, V.; Obradović, B.; Leskošek-Čukalović, I.; Trifunović, O.; Pešić, R., and Bugarski, B. (2001) Electrostatic generation of alginate microbeads loaded with brewing yeast. Proc. Biochem. 37: 17–22.

    Article  Google Scholar 

  38. Nedović, V.A.; Obradović, B.; Leskošek-Čukalović, I.; Korać, A. and Bugarski, B. (2002) Alginateimmobilized yeast cells for continuous beer brewing in a gas-lift bioreactor. In: Proceedings of X International BRG Workshop on Bioencapsulation “Cell Physiology and Interactions of Biomaterials and Matrices”, Prague, Czech Republic; pp. 152–155.

    Google Scholar 

  39. Smogrovicova, D.; Domeny, Z.; Gemeiner, P.; Malovikova, A. and Sturdik, E. (1997) Reactors for continuous primary beer fermentation using immobilised yeast. Biotechnol. Techn. 11: 281–286.

    Google Scholar 

  40. Smogrovicova, D.; Domeny, Z. and Svitel, J. (2001) Modeling of saccharide utilization in primary beer fermentation with yeasts immobilized in calcium alginate. Appl. Biochem. Biotechnol. 94: 147–158.

    Article  PubMed  CAS  Google Scholar 

  41. Navratil, M.; Domeny, Z.; Sturdik, E.; Smogrovicova, D. and Gemeiner, P. (2002) Production of nonalcoholic beer using free and immobilized cells of Saccharomyces cerevisiae deficient in the tricarboxylic acid cycle. Biotechnol. Appl. Biochem. 35: 133–140.

    Article  PubMed  CAS  Google Scholar 

  42. Mensour, N.; Margaritis, A.; Briens, C.L.; Pilkington, H. and Russell, I. (1995) Gas lift systems for immobilized cell systems. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 125–133.

    Google Scholar 

  43. Mensour, N.; Margaritis, A.; Briens, C.L.; Pilkington, H. and Russell, I. (1996) Applications of immobilized yeast cells in the brewing industry. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized cells: basics and applications. Elsevier, Amsterdam; pp. 661–671.

    Google Scholar 

  44. Pilkington, H.; Maragaritis, A.; Mensour, N.; Sobczak, J.; Hancock, I. and Russell, I. (1999) Kappacarrageenan gel immobilization of lager brewing yeast. J. Inst. Brew. 105: 398–404.

    CAS  Google Scholar 

  45. Shindo, S. and Kamimur, M.J. (1990) Immobilization of yeast with hollow PVA beads. J. Ferm. Bioeng. 70: 232–234.

    Article  CAS  Google Scholar 

  46. Nedović, V.A.; Obradović, B.; Bezbradica, D.; Leskošek-Čukalović, I. and Bugarski, B. (2003) Lentikats® as potential carriers for brewing yeast. In: Proceedings of XI International Workshop on Bioencapsulation “State of Art of Bio&Encapsulation Science and Technology”, May 25–27, Strasbourg, France; P-1, pp. 1–4.

    Google Scholar 

  47. Nedović, V.A.; Bezbradica, D.; Obradović, B.; Leskošek-Čukalović, I. and Bugarski, B. (2004) Primary beer fermentation by PVA-immobilized brewing yeast in a gas-lift bioreactor. In: World Brewing Congress 2004 Proceedings, July 24–28, San Diego, California; ASBC and MBAA, ISBN: 0-9718255-5-6, CD Rom; O-63.

    Google Scholar 

  48. Bezbradica, D.; Stojanov, V.; Nedovic, V.; Obradovic, B.; Bugarski, B. and Leskosek-Cukalovic, I. (2003) Beer fermentation by PVA immobilized brewing yeasts in a gas-lift bioreactor. In: Sorvari, S. (Ed.) Proc. of the 1st International Congress on Bioreactor Technology in Cell, Tissue Culture and Biomedical Applications, Tampere, Finland; pp. 210–217.

    Google Scholar 

  49. Smogrovicova, D.; Domeny, Z.; Navratil, M. and Dvorak, P. (2001) Continuous fermentation using polyvinyl alcohol entrapped yeast. In: Proc. of the 28th European Brewery Convention Congress. EBC; contribution number 50, pp. 1–9.

    Google Scholar 

  50. Kronlöf, J. and Virkajärvi, I. (1999) Primary fermentation with immobilized yeast. In: Proc. of the 27th European Brewery Convention Congress. EBC; pp. 761–770.

    Google Scholar 

  51. Kronlöf, J.; Virkajärvi, I.; Storgards, E.L.; Londesborough, J. and Dymond, G. (2000) Combined primary and secondary fermentation with immobilized yeast. In: World Brewing Congress 2000 Proceedings, July 27–August 3, Orlando, Florida; P-56.

    Google Scholar 

  52. Pajunen, E.; Tapani, K.; Berg, H.; Ranta, B.; Bergin, J.; Lommi, H. and Viljava, T. (2001) Controlled beer fermentation with continuous on-stage immobilized yeast reactor. In: Proceedings of the 28th European Brewery Convention Congress. EBC; contribution number 49, pp. 1–12.

    Google Scholar 

  53. Tapani, K.; Soininen-Tengvall, P.; Berg, H.; Ranta, B. and Pajunen, E. (2003) Continuous primary fermentation of beer with immobilised yeast. In: Smart, K. (Ed.) Brewing yeast fermentation performance, Second Edition. Blackwell Publishing, Oxford; pp. 293–301.

    Google Scholar 

  54. Branyik, T.; Vicente, A.; Cruz, J.M. and Teixeira, J. (2001) Spent grains — a new support for brewing yeast immobilisation. Biotechnol. Lett. 23: 1073–1078.

    Article  CAS  Google Scholar 

  55. Branyik, T.; Vicente, A.; Cruz, J.M. and Teixeira, J. (2002) Continuous primary beer fermentation with brewing yeast immobilized on spent grains. J. Inst. Brew. 108(4): 410–415.

    Google Scholar 

  56. Inoue, T. (1995) Development of a two-stage immobilized yeast fermentation system for continuous beer brewing. In: Proc. of the 25th European Brewery Convention Congress. EBC; pp. 25–36.

    Google Scholar 

  57. Narziss, L. and Hellich, P. (1971) Ein Beitrag zur wesentlichen Beschleunigung der Gärung und Reifung des Bieres. Brauwelt 111: 1491–1500.

    CAS  Google Scholar 

  58. Aivasidis, A.; Wandrey, C.; Eils, H.-G. and Katzke, M. (1991) Continuous fermentation of alcohol-free beer with immobilized yeast cells in fluidized bed reactors. In: Proceedings of the 23rd European Brewery Convention Congress. EBC; pp. 569–576.

    Google Scholar 

  59. Aivasidis, A. (1996) Another look at immobilized yeast systems. Cerevisia 21(1): 27–32.

    CAS  Google Scholar 

  60. Yamauchi, Y.; Okamato, T.; Murayama, H.; Nagara, A.; Kashihara, T. and Nakanishi, K. (1994) Beer brewing using an immobilized yeast bioreactor design of an immobilized yeast bioreactor for rapid beer brewing system. J. Ferm. Bioeng. 78: 443–449.

    Article  CAS  Google Scholar 

  61. Breitenbücher, K. and Mistler, M. (1995) Fluidized-bed fermenters for the continuous production of nonalcoholic beer with open-pore sintered glass carriers. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 77–89.

    Google Scholar 

  62. Virkajärvi, I. and Kronlöf, J. (1998) Long-term stability of immobilized yeast columns in primary fermentation. J. Am. Soc. Brew. Chem. 56: 70–75.

    Google Scholar 

  63. Tata, M.; Bower, P.; Bromberg, S.; Duncombe, D.; Fehring, J.; Lau, V.V.; Ryder, D. and Stassi, P (1999) Immobilized yeast bioreactor systems for continuous beer fermentation. Biotechnol. Prog. 15: 105–113.

    Article  PubMed  CAS  Google Scholar 

  64. Yamauchi, Y. and Kashihara, T. (1995) Kirin immobilized system. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 99–117.

    Google Scholar 

  65. Yamauchi, Y.; Okamato, T.; Murayama, H.; Kajino, K.; Nagara, A. and Nogushi, K. (1995) Rapid maturation of beer using an immobilized yeast bioreactor. J. Biotechnol. 38: 109–116.

    Article  CAS  Google Scholar 

  66. Krikilion, P.; Andries, M.; Goffin, O.; Van Beveren, P.C. and Masschelein, C.A. (1995) Optimal matrix and reactor design for high gravity fermentation with immobilized yeast. In: Proc. of the 25th European Brewery Convention Congress. EBC; pp. 419–426.

    Google Scholar 

  67. Andries, M.; Van Beveren, P.C.; Goffin, O. and Masschelein, C.A. (1996) Design and application of an immobilized loop bioreactor for continuous beer fermentation. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized cells: basics and applications. Elsevier, Amsterdam; pp. 672–678.

    Google Scholar 

  68. Andries, M.; Van Beveren, P.C.; Goffin, O.; Rajotte, P. and Masschelein, C.A. (2000) Results on semiindustrial continuous top fermentation with the Meura-Delta immobilized yeast fermenter. Brauwelt Int. II: 134–136.

    Google Scholar 

  69. Van De Winkel, L.; Van Beveren, P.C. and Masschelein, C.A. (1991) The application of an immobilized yeast loop reactor to the continuous production of alcohol-free beer. Proc. of the 23rd European Brewery Convention Congress. EBC; pp. 577–584.

    Google Scholar 

  70. Van De Winkel, L.; Van Beveren, P.C.; Borremans, E; Goossens, E. and Masschelein, C.A. (1993) High performance immobilized yeast reactor design for continuous beer fermentation. Proc. of the 24th European Brewery Convention Congress. EBC; pp. 307–314.

    Google Scholar 

  71. Van De Winkel, L.; Mc Murrough, I.; Evers, G.; Van Beveren, P.C. and Masschelein, C.A. (1995) Pilotscale evaluation of silicon carbide immobilized yeast systems for continuous alcohol-free beer production. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 90–98.

    Google Scholar 

  72. Van De Winkel, L. (1995) Design and optimization of a multipurpose immobilized yeast bioreactor system for brewery fermentations. Cerevisia 20(1): 77–80.

    Google Scholar 

  73. Scott, J.A. and O’Reilly, A.M. (1995) Use of a flexible sponge matrix to immobilize yeast for beer fermentation. J. Am. Soc. Brew. Chem. 53: 67–71.

    CAS  Google Scholar 

  74. Atkinson, B. and Taidi, B. (1995) Technical and technological requirements for immobilized systems. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 17–22.

    Google Scholar 

  75. Van De Winkel, L. and De Vuyst, L. (1997) Immobilized yeast cell systems in today’s breweries and tomorrow’s. Cerevisia 22(1): 27–31.

    Google Scholar 

  76. Baron, G.V.; Willaert, R. and De Backer, L. (1996) Immobilised cell reactors. In: Willaert, R.; Baron, G.V. and De Backer, L. (Eds.) Immobilised living cell systems: modeling and experimental methods. John Wiley & Sons, Chichester; pp. 67–95.

    Google Scholar 

  77. Chang, H.N. and Moo-Young, M. (1988) Analysis of oxygen transport in immobilized whole cells. In: Moo-Young, M. (Ed.) Bioreactor immobilized enzyme and cells. Elsevier Applied Science, London; pp. 33–51.

    Google Scholar 

  78. Haikara, A.; Virkajärvi, I.; Kronlöf, J. and Pajunen, E. (1997) In: Proc. of the 26th European Brewery Convention Congress. EBC; pp. 439–446.

    Google Scholar 

  79. Virkajärvi, I. (2002) Some developments in immobilized fermentation of beer during the last 30 years. Brauwelt Int. 20: 100–105.

    Google Scholar 

  80. Champagne, C.P. (1996) Immobilized cell technology in food processing. In: Wijffels, R.H.; Buitelaar, R.M.; Bucke, C. and Tramper, J. (Eds.) Immobilized cells: basics and applications. Elsevier, Amsterdam; pp. 633–640.

    Google Scholar 

  81. Anon. (2003) The Finnish flash. Brewer’s Guardian 132(11): 30–32.

    Google Scholar 

  82. Dillenhofer, W. and Ronn, D. (1996) Secondary fermentation of beer with immobilized yeast. Brauwelt Int.: 344–346.

    Google Scholar 

  83. Mensour, N.; Margaritis, A.; Briens, C.L.; Pilkington, H. and Russell, I. (1997) New developments in the brewing industry using immobilized yeast cell bioreactor systems. J. Inst. Brew. 103: 363–370.

    CAS  Google Scholar 

  84. Back, W.; Krottenthaler, M. and Braun, T. (1998) Investigations into continuous beer maturation. Brauwelt Int. III: 222–226.

    Google Scholar 

  85. Nitzsche, F.; Hohn, G.; Meyer-Pittroff, R.; Berger, S. and Pommersheim, R. (2001) A new way for immobilized yeast systems: secondary fermentation without heat treatment. In: Proc. of the 28th European Brewery Convention Congress. EBC; contribution number 51, pp. 1–9.

    Google Scholar 

  86. Blumelhuber, G.; Meyer-Pittroff, R. and Nitzsche, F. (2004) New results with an immobilized yeast system: secondary fermentation with Immopore. In: World Brewing Congress 2004 Proceedings, July 24–28, San Diego, California; ASBC and MBAA, ISBN: 0-9718255-5-6, CD Rom; O-61.

    Google Scholar 

  87. McMurrough, I. (1995) Scope and limitations for immobilized cell systems in the brewing industry. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 2–16.

    Google Scholar 

  88. Narziss, L.; Miedaner, H.; Kern, E. and Leibhard, M. (1992) Technology and composition of nonalcoholic beers. Brauwelt Int. 4: 396.

    Google Scholar 

  89. Debourg, A.; Laurent, M.; Goossens, E. and Van De Winkel, L. (1994) Wort aldehyde reduction potential in free and immobilized yeast systems. J. Am. Soc. Brew. Chem. 52: 100–106.

    CAS  Google Scholar 

  90. Masschelein, C.A. and Andries, M. (1995) Future scenario of immobilized systems: promises and limitations. In: EBC Monograph XXIV, EBC Symposium on immobilized yeast applications in the brewing industry; pp. 223–241.

    Google Scholar 

  91. Willaert, R. (2000) Beer production using immobilised cell technology. Minerva Biotecnol. 12: 319–330.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Nedović, V., Willaert, R., Leskošek-Čukalović, I., Obradović, B., Bugarski, B. (2005). Beer Production Using Immobilised Cells. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_15

Download citation

Publish with us

Policies and ethics