Skip to main content

Part of the book series: Developments in Hydrobiology ((DIHY,volume 179))

Abstract

Siboglinid, or pogonophoran, annelids are tubicolous worms that rely on chemoautotrophic endosymbionts for nutrition. Three clades within the siboglinids are recognized: Frenulata, Vestimentifera, and Monilifera. As a group, these worms have received considerable attention from molecular phylogenetists. Most studies have focused either on the evolutionary origins of the group or on the relationships within vestimentiferans, which live at hydrocarbon seeps and hydrothermal vents. Here I review the literature to date on siboglinid molecular phylogeny and summarize the clade’s evolution. The vestimentiferans have been well studied, especially in the eastern Pacific. The seep taxon Lamellibrachia is basal in the clade with vent species being more derived. Recent studies of seeps are finding new species and suggest that habitat depth can be correlated with species boundaries. In contrast to the vestimentiferans, frenulate evolution has been poorly studied. Despite their greater apparent diversity, frenulate specimens have not been sampled so extensively, and thus little is known about their evolution. Sclerolinum, also referred to as Monilifera, is a recognized genus of siboglinids that forms the sister group to Vestimentifera. Like the frenulates, little is known about the history of this group. Our present understanding of siboglinid phylogeny has, in large part, been dictated by insufficient sampling effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailly, X., D. Jollivet, S. Vanin, J. Deutsch, F. Zal, F. Lallier & A. Toulmond, 2002. Evolution of the sulfide-binding function within the globin multigenic family of the deep-sea hydrothermal vent tubeworm Riftia pachyptila. Molecular Biology and Evolution 19: 1421–1433.

    PubMed  CAS  Google Scholar 

  • Bailly, X., R. Leroy, S. Carney, O. Collin, F. Zal, A. Toulmond & D. Jollivet, 2003. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection. Proceedings of the Natural Academy of Sciences 100:5885–5890.

    CAS  Google Scholar 

  • Black, M. B., K. M. Halanych, P. A. Y. Maas, W. R. Hoeh, J. Hashimoto, D. Desbruyères, R. A. Lutz & R. C. Vrijenhoek, 1997. Molecular systematics of vestimentiferan tubeworms from hydrothermal vents and cold-water seeps. Marine Biology 130: 141–149.

    Article  CAS  Google Scholar 

  • Black, M. B., R. A. Lutz & R. C. Vrijenhoek, 1994. Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the eastern Pacific. Marine Biology 120: 33–39.

    Google Scholar 

  • Black, M. B., A. Trivedi, P. A. Y. Maas, R. A. Lutz & R. C. Vrijenhoek, 1998. Population genetics and biogeography of vestimentiferan tube worms. Deep-Sea Research II 45: 365–382.

    Article  CAS  Google Scholar 

  • Boore, J. L. & W. M. Brown, 2000. Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Molecular Biology and Evolution 17: 87–106.

    PubMed  CAS  Google Scholar 

  • Bucklin, A., 1988. Allozymic variability of Riftia pachyptila populations from the Galapagos Rift and 21° N hydrothermal vents. Deep-Sea Research 35: 1759–1768.

    Article  Google Scholar 

  • Carney, S. L., J. R. Peoples, C. R. Fisher & S. W. Schaeffer, 2002. AFLP analyses of genomic DNA reveal no differentiation between two phenotypes of the vestimentiferan tubeworm, Ridgeia piscesae. Cahiers De Biologie Marine 43:363–366.

    Google Scholar 

  • Di Meo, C. A., A. E. Wilbur, W. E. Holben, R. A. Feldman, R. C. Vrijenhoek & S. C. Cary, 2000. Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Applied and Environmental Microbiology 66: 651–658.

    PubMed  Google Scholar 

  • Etter, R. J. & M. A. Rex, 1990. Population differentiation decreases with depth in deep-sea gastropods. Deep-Sea Research 37: 1251–1261.

    Article  Google Scholar 

  • Etter, R. J., M. A. Rex, M. C. Chase & J. M. Quattro, 1999. A genetic dimension to deep-sea biodiversity. Deep-Sea Research Part I 46: 1095–1099.

    Article  Google Scholar 

  • Feldman, R. A., M. B. Black, C. S. Cary, R. A. Lutz & R. C. Vrijenhoek, 1997. Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Molecular Marine Biology and Biotechnology 6: 268–277.

    PubMed  CAS  Google Scholar 

  • Field, K. G., G. J. Olsen, D. J. Lane, S. J. Giovannoni, M. T. Ghiselin, E. C. Raff, N. R. Pace & R. A. Raff, 1988. Molecular phylogeny of the animal kingdom. Science 239:748–753.

    PubMed  CAS  Google Scholar 

  • Halanych, K. M., T. G. Dahlgren & D. McHugh, 2002. Evidence that some lesser-known “phyla” are annelids. American Zoologist 42: 678–684.

    Google Scholar 

  • Halanych, K. M., R. A. Feldman & R. C. Vrijenhoek, 2001. Molecular evidence that Sclerolinum brattstromi is closely related to vestimentiferans, not frenulate pogonophorans (Siboglinidae, Annelida). Biological Bulletin 201: 65–75.

    PubMed  CAS  Google Scholar 

  • Halanych, K. M., R. A. Lutz & R. C. Vrijenhoek, 1998. Evolutionary origins and age of vestimentiferan tube-worms. Cahiers De Biologie Marine 39: 355–358.

    Google Scholar 

  • Ivanov, A. V., 1963. Pogonophora. Academic Press, London.

    Google Scholar 

  • Ivanov, A. V., 1991. Monilifera — a new subclass of Pogonophora. Doklady Akademii Nauk SSR 319: 505–507.

    Google Scholar 

  • Ivanov, A. V., 1994. On the systematic position of Vestimentifera. Zoologische Jahrbücher Systematik 121: 409–456.

    Google Scholar 

  • Johnson, G. B., 1977. Assessing electrophoretic similarity: the problem of hidden heterogeneity. Annual Review of Ecology Systematics 8: 309–328.

    Article  CAS  Google Scholar 

  • Jones, M. L., 1981. Riftia pachyptila Jones: Observations on the vestimentiferan worm from the Galapagos Rift. Science 213:333–336.

    PubMed  Google Scholar 

  • Jones, M. L., 1985. On the vestimentifera, new phylum: six new species, and other taxa, from hydrothermal vents and elsewhere. Biol. Soc. Wash. Bull. 6: 117–158.

    Google Scholar 

  • Jones, M. L., 1988. The Vestimentifera, their biology, systematic and evolutionary patterns. In Laubier, L. (ed.), Actes du Colloque “Les Sources Hydrothermales de la Ride du Pacifique Oriental. Biologie et Ecologie.” Institut Océanographique, Paris, November 4–7, 1985. Gauthier-Villars, Montrouge: 69–82.

    Google Scholar 

  • Kojima, S., 1998. Paraphyletic status of Polychaeta suggested by phylogenetic analysis based on the amino acid sequences of elongation factor-1-alpha. Molecular Phylogenetics and Evolution 9: 255–261.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, S., T. Hashimoto, M. Hasegawa, S. Murata, S. Ohta, H. Seki & N. Okada, 1993. Close phylogenetic relationship between Vestimentifera (tube worms) and Annelida revealed by amino acid sequence of elongation factor-1a. Journal of Molecular Evolution 37: 66–70.

    Article  PubMed  CAS  Google Scholar 

  • Kojima, S., S. Ohta, T. Miura, Y. Fujiwara & J. Hashimoto, 2000. Molecular phylogenetic study of chemoautosynthesis-based communities in the Manus Basin. JAMSTEC Journal of Deep Sea Biology 16: 7–13.

    Google Scholar 

  • Kojima, S., S. Ohta, T. Yamamoto, T. Miura, Y. Fujiwara, K. Fujikura & J. Hashimoto, 2002. Molecular taxonomy of vestimentiferans of the western Pacific and their phylogenetic relationship to species of the eastern Pacific: II. Families Escarpiidae and Arcovestiidae. Marine Biology 141: 57–64.

    CAS  Google Scholar 

  • Kojima, S., S. Ohta, T. Yamamoto, T. Yamaguchi, T. Miura, Y. Fujiwara, K. Fujikura & J., 2003. Hashimoto Molecular taxonomy of vestimentiferans of the western Pacific, and their phylogenetic relationship to species of the eastern Pacific III. Alaysia-like vestimentiferans and relationships among families. Marine Biology 142: 625–635.

    Google Scholar 

  • Kojima, S., S. Ohta, T. Yamamoto, T. Miura, Y. Fujiwara & J. Hashimoto, 2001. Molecular taxonomy of vestimentiferans of the western Pacific and their phylogenetic relationship to species of the eastern Pacific. 1. Family Lamellibrachiidae. Marine Biology 139: 211–219.

    CAS  Google Scholar 

  • Kojima, S., R. Segawa, J. Hashimoto & S. Ohta, 1997. Molecular phylogeny of vestimentiferans collected around Japan, revealed by the nucleotide sequences of mitochondrial DNA. Marine Biology 127: 507–513.

    Article  Google Scholar 

  • Marsh, A. G., L. S. Mullineaux, C. M. Young & D. T. Manahan, 2001. Larval dispersal potential of the tubeworm Riftia pachyptila at deep-sea hydrothermal vents. Nature 411: 77–80.

    Article  PubMed  CAS  Google Scholar 

  • McHugh, D., 1997. Molecular evidence that echiurans and pogonophorans are derived annelids. Proceedings of the National Academy of Sciences of the United States of America 94: 8006–8009.

    Article  PubMed  CAS  Google Scholar 

  • McMullin, E. R., S. Hourdez, S. W. Schaeffer & C. R. Fisher, 2003. Phylogenetics and biogeography of deep sea vestimentiferan tubeworms and their bacterial symbionts. Symbiosis 34: 1–41.

    Google Scholar 

  • Negrisolo, E., A. Pallavicini, R. Barbato, S. Dewilde, A. Ghiretti-Magaldi, L. Moens & G. Lanfranchi, 2001. The evolution of extracellular hemoglobins of annelids, vestimentiferans, and pogonophorans. Journal of Biological Chemistry 276: 26391–26397.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, K. & C. R. Fisher, 2000. Absence of Cospeciation in Deep-Sea Vestimentiferan Tube Worms and Their Bacterial Endosymbionts. Symbiosis 28: 1–15.

    Google Scholar 

  • Reeb, C. A. & J. C. Avise, 1990. A genetic discontinuity in a continuously distributed species: mitochondrial DNA in the American Oyster, Crassostrea virginica. Genetics 124: 397–406.

    PubMed  CAS  Google Scholar 

  • Rouse, G. W., 2001. A cladistic analysis of Siboglinidae Caullery, 1914 (Polychaeta, Annelida): formerly the phyla Pogonophora and Vestimentifera. Zoological Journal of the Linnean Society 132: 55–80.

    Article  Google Scholar 

  • Rouse, G. W. & K. Fauchald, 1995. The articulation of annelids. Zoologica Scripta 24: 269–301.

    Article  Google Scholar 

  • Rouse, G. W. & K. Fauchald, 1997. Cladistics and polychaetes. Zoological Scripta 26: 139–204.

    Google Scholar 

  • Rouse, G. W., S. K. Goffredi & R. C. Vrijenhoek, 2004. Osedax: Bone-eating marine worms with drawf males. Science 305: 668–671.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, A., 2003. Phylogeny of Vestimentifera (Siboglinidae, Annelida) inferred from morphology. Zoologica Scripta 32:321–342.

    Article  Google Scholar 

  • Schulze, A. & K. M. Halanych, 2003. Siboglinid evolution shaped by habitat preference and sulfide tolerance. Hydrobiologia 496: 199–205.

    Article  Google Scholar 

  • Sites, J. W. & S. K. Davis, 1989. Phylogenetic relationships and molecular variablility within and among six chromosome races of Sceloporus grammicus (Sauria, Iguanidae), based on nuclear and mitochondial markers. Evolution 43: 296–317.

    Google Scholar 

  • Southward, E. C., 1988. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. Journal of the Marine Biological Association of the United Kingdom 68: 465–487.

    Google Scholar 

  • Southward, E. C., 1999. Development of Perviata and Vestimentifera (Pogonophora). Hydrobiologia 402: 185–202.

    Article  Google Scholar 

  • Southward, E. C., V. Tunnicliffe & M. Black, 1995. Revision of the species of Ridgeia from northeast Pacific hydrothermal vents, with a redescription of Ridgeia piscesae Jones (Pogonophora: Obturata = Vestimentifera). Canadian Journal of Zoology 73: 282–295.

    Google Scholar 

  • Southward, E. C., V. Tunnicliffe, M. B. Black, D. R. Dixon & L. R. Dixon. 1996. Ocean-ridge Segmentation and Vent Tubeworms (Vestimentifera) in the NE Pacific. In MacLeod, C. J., P. A. Tyler & C. L. Walker (eds), Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges, Geological Society Special Publication. Geological Society, pp. 211–224.

    Google Scholar 

  • Southward, E. C., A. Schulze, S. L. Gardiner, 2005. Pogonophora (Annelida): form and function. Hydrobiologia 535/536 (Dev. Hydrobiol. 179): 225–249.

    Article  Google Scholar 

  • Steinger, T. S., C. Körner & B. Schid, 1996. Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105: 94–99.

    Article  Google Scholar 

  • Suzuki, T., T. Takagi & S. Ohta, 1993. N-terminal amino acid sequences of 440 kDa hemoglobins of the deep-sea tube-worms, Lamellibrachia sp. 1, Lamellibrachia sp. 2, and slender Vestimentifera gen. sp. 1. Evolutionary relationship with annelid hemoglobins. Zoological Science 10: 141–147.

    PubMed  CAS  Google Scholar 

  • Suzuki, T., T. Takagi, K. Okuda, T. Furukohri & S. Ohta, 1989. The deep-sea tubeworm hemoglobin: subunit structure and phylogenetic relationship with annelid haemoglobin. Zoological Science 6: 915–926.

    CAS  Google Scholar 

  • Suzuki, T., T. Takagi & O. S., 1988. N-terminal amino acid sequence of the deep-sea tubeworm haemoglobin remarkably resembles that of annelid haemoglobin. Biochemical Journal 255: 541–545.

    PubMed  CAS  Google Scholar 

  • Tunnicliffe, V., 1988. Biogeography and evolution of hydrothermal-vent fauna in the eastern Pacific Ocean. Proceedings of the Royal Society Series B — Biological Sciences, London 233: 347–366.

    Google Scholar 

  • Uschakov, P., 1933. Eine neue Form aus der Familie Sabellidae (Polychaeta). Zoological Anzeiger 104: 205–208.

    Google Scholar 

  • Webb, M., 1969. Lamellibrachia barhami, gen. nov. sp. nov. (Pogonophora), from the northeast Pacific. Bull. Mar. Sci. 19: 18–47.

    Google Scholar 

  • Williams, N. A., D. R. Dixon, E. C. Southward & P. W. H. Holland, 1993. Molecular evolution and diversification of the vestimentiferan tube worms. Journal of the Marine Biological Association of the United Kingdom 73: 437–452.

    Article  CAS  Google Scholar 

  • Winnepenninckx, B., T. Backeljau & R. De Wachter, 1995. Phylogeny of protostome worms derived from 18S rRNA sequences. Molecular Biology and Evolution 12: 641–649.

    PubMed  CAS  Google Scholar 

  • Young, C. M., E. Vázquez, A. Metaxas & P. A. Tyler, 1996. Embryology of vestimentiferan tube worms from deep-sea methane/sulphide seeps. Nature 381: 514–516.

    Article  CAS  Google Scholar 

  • Zal, F., Y. Kawasaki, J. J. Childress, F. H. Lallier & A. Toulmond, 1997. Primary structure of the common polypeptide chain b from the multi-haemoglobin system of the hydrothermal vent tube worm Riftia pachyptila: an insight on the sulphide binding-site. Proteins 29: 562–574.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Halanych, K.M. (2005). Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans): a review. In: Bartolomaeus, T., Purschke, G. (eds) Morphology, Molecules, Evolution and Phylogeny in Polychaeta and Related Taxa. Developments in Hydrobiology, vol 179. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3240-4_16

Download citation

Publish with us

Policies and ethics