Skip to main content

Phase Transition in Dusty Plasmas

  • Chapter

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 321))

Abstract

We discuss the microphysical processes that trigger phase transitions in a dusty plasma not in thermodynamic equilibrium and subject to ion streaming. For pressures below the critical pressure Pc for condensation, the grains acquire a large random kinetic energy and form a weakly coupled fluid. If pressure is increased to greater than Pc, the grains lose their kinetic energy and reach a strongly coupled crystalline state. The dust heating in the fluid phase is due to an ion-dust two-stream instability, which is stabilized at P > Pc by the combined effect of ion-neutral and dust-neutral collisions. When the pressure is decreased from the crystalline state to below the critical pressure Pm for melting, transverse phonons are destabilized by ion streaming, which destroys the short range ordering of the dust grains and triggers melting. It is found that Pm < Pc. For Pm < P < Pc mixed phase states can exist. Although the system is not in thermodynamic equilibrium, the process resembles closely to a first order phase transition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Chu, J. H. and Lin I: 1994, ‘Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas', Phys. Rev. Lett. 72, 4009.

    Article  ADS  Google Scholar 

  • Epstein, P.: 1924, “On the resistance experienced by spheres in their motion through gases”, Phys. Rev. 23, 710.

    Article  ADS  Google Scholar 

  • Joyce, G, Lampe, M. and Ganguli, G.: 2003, ‘Particle simulation of dusty plasmas', in J. Buchner, C. T. Dum, and M. Scholer, (eds.), Lecture Notes in Physics, #615, Springer, pp. 125.

    Google Scholar 

  • Ganguli, G., Joyce, G. and Lampe, M.: 2002, ‘Phase transition in a dusty plasma: A microphysical description', in R. Bharuthram, M.A. Hellberg, P.K. Shukla, and F. Verheest (eds.), Dusty Plasmas in the New Millennium, American Institute of Physics Conference Proceedings 649, New York, pp. 157–161.

    Google Scholar 

  • Joyce, G., Lampe, M. and Ganguli, G.: 2002, ‘Instability triggered phase transition to a dusty plasma condensate', Phys. Rev. Lett., 88, 095006.

    Article  ADS  Google Scholar 

  • Kaw, P. and Sen, A.: 1998, ‘Low frequency modes in strongly coupled dusty plasmas', Phys. Plasmas, 10, 3552.

    Article  ADS  Google Scholar 

  • Krall, N.A. and Trivelpiece, A.W.: 1973, Principles of Plasma Physics, McGraw-Hill, New York, Chap. 11.

    Google Scholar 

  • Lampe, M., Joyce, G. and Ganguli, G.: 2001, ‘Particle simulation of dust structures in plasmas', IEEE Trans. Plasma Sci., 29, 238.

    Article  ADS  Google Scholar 

  • Lampe, M., Joyce, G. and Ganguli, G.: 2001, ‘Analytical and simulation studies of dust grain interaction and structuring', Phys. Scripta T89, 106.

    Article  ADS  Google Scholar 

  • Melandso, F.: 1997, ‘Heating and phase transitions of dust-plasma crystals in a flowing plasma', Phys. Rev. E 55, 7495.

    Article  ADS  Google Scholar 

  • Melzer, A., Schweigert, V.A., Schweigert, I.V., Homnann, A., Peters, S. and Piel, A.: 1996a, ‘Structure and stability of the plasma crystal', Phys. Rev. E 54, R46.

    Article  ADS  Google Scholar 

  • Melzer, A., Homnann, and Piel, A.: 1996b, ‘Experimental investigation of the melting transition of the plasma crystal', Phys. Rev. E 53, 2757.

    Article  ADS  Google Scholar 

  • Melzer, A., Trottenberg, T. and Piel, A.: 1994, ‘Experimental determination of the charge on dust particles forming Coulomb lattice', Phys. Lett. A 191, 301.

    Article  ADS  Google Scholar 

  • Nambu, M., Vladimirov, S.V. and Shukla, P.K.: 1995, ‘Attractive forces between charged particulates in plasmas', Phys. Lett. A, 203, 40.

    Article  ADS  Google Scholar 

  • Rosenberg, M, J.: 1996, ‘Ion-dust streaming instability in processing plasmas', Vac. Sci. Technol. A, 14, 631.

    Article  ADS  Google Scholar 

  • Rostoker, N. and Rosenbluth, M.N.: 1960, ‘Test particles in a completely ionized plasma', Phys. Fluids 3, 1.

    Article  MathSciNet  MATH  ADS  Google Scholar 

  • Schweigert, V.A., Schweigert, I.V., Melzer, A., Homnann, A. and Piel, A.: 1996, ‘Alignment and instability of dust crystals in plasmas', Phys. Rev. E 54, 4155.

    Article  ADS  Google Scholar 

  • Schweigert, V.A., Schweigert, I.V., Melzer, A., Homnann, A. and Piel, A.: 1998, ‘Plasma crystal melting: a nonequilibrium phase transition', Phys. Rev. Lett. 80, 5345.

    Article  ADS  Google Scholar 

  • Thomas, H., Morfill, G.E. and Demmel, V.: 1994, ‘Plasma Crystal: Coulomb Crystallization in a Dusty Plasma’ Phys. Rev. Lett. 73, 652.

    Article  ADS  Google Scholar 

  • Thomas, H., and Morfill, G.E.: 1996, ‘Melting dynamics of a plasma crystal', Nature, London, 379, 806.

    Article  ADS  Google Scholar 

  • Thomas, H. and Morfill, G.E.: 1996, ‘Solid/liquid/gaseous phase transitions in plasma crystals', J. Vac. Sci. Technol. A 14, 501.

    Article  ADS  Google Scholar 

  • Vladimirov, S.V. and Ishihara, O.: 1996, ‘On plasma crystal formation', Phys Plasmas, 3, 444.

    Article  ADS  Google Scholar 

  • Winske, D, Daughton, W., Lemons, D.S. and Murillo, M.S.: 2000, ‘Ion kinetic effects on the wake potential behind a dusty grain in a flowing plasma', Phys. Plasmas, 7, 2320.

    Article  ADS  Google Scholar 

  • Winske, D.: 2001, ‘Nonlinear wake potentials in a dusty plasma', IEEE Trans. Plasma Sci. 29, 191.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Ganguli, G., Joyce, G., Lampe, M. (2005). Phase Transition in Dusty Plasmas. In: Burton, W., et al. Nonequilibrium Phenomena in Plasmas. Astrophysics and Space Science Library, vol 321. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3109-2_13

Download citation

Publish with us

Policies and ethics