Skip to main content

Hydrogeophysical Methods at the Laboratory Scale

  • Chapter
Hydrogeophysics

Part of the book series: Water Science and Technology Library ((WSTL,volume 50))

Abstract

Hydrogeophysics relies on the inference of hydrologically important properties based on the measurement of other properties that are more easily obtained. This inference requires, first, the definition of petrophysical relationships such as the dependence of the bulk dielectric permittivity of a medium on its volumetric water content (see Chapters 4 and 9 of this volume). Second, confounding effects must be defined or controlled to allow for appropriate corrections. For example, if electrical resistance tomography (ERT) is to be used to infer water-content changes, the change in measured electrical conductivity as a function of temperature must be accounted for, or measurements must be made under isothermal conditions. Third, if the measured property or the property of interest varies within the measurement sample volume, then the manner in which the measurement method averages these heterogeneous values must be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Binley, A., S. Henry-Poulter, and B. Shaw, Examination of solute transport in an undisturbed soil column using electrical resistance tomography, Water Resour. Res., 32(4), 763–769, 1996a.

    Article  Google Scholar 

  • Binley, A., B. Shaw, and S. Henry-Poulter, Flow pathways in porous media: Electrical resistance tomography and dye staining image verification, Measurement Science and Technology, 7(3), 384–390, 1996b.

    Article  Google Scholar 

  • Bourbie, T., O. Coussy, and B. Zinszner, Acoustics of Porous Media, Gulf Publishing Company, Houston, TX, 1987.

    Google Scholar 

  • Brown, B.H., Medical impedance tomography and process impedance tomography: A brief review, Measurement Science & Technology, 12(8), 991–996, 2001.

    Article  Google Scholar 

  • Cadoret, T., G. Mavko, and B. Zinszner, Fluid distribution effect on sonic attenuation in partially saturated limestones, Geophysics, 63, 154–160, 1998.

    Article  Google Scholar 

  • Chu, D., D. Tang, T.C. Austin, A.A. Hinton, and R.I. Arthur, Jr., Fine-scale acoustic tomographic imaging of shallow water sediments, IEEE Journal of Oceanic Engineering, 26(1), 70–83, 2001.

    Article  Google Scholar 

  • Dominico, S.N., Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir, Geophysics, 41, 882–894, 1976.

    Article  Google Scholar 

  • Ferré, T.P.A., H.H. Nissen, and J. Å imunek, The effect of the spatial sensitivity of TDR on inferring soil hydraulic properties from water content measurements made during the advance of a wetting front, Vadose Zone Journal, 1, 281–288, 2002.

    Article  Google Scholar 

  • Ferré, P.A., J.H. Knight, D.L. Rudolph, and R.G. Kachanoski, The sample area of conventional and alternative time domain reflectometry probes, Water Resour. Res., 34(11), 2971–2979, 1998.

    Article  Google Scholar 

  • Gassman, F., Uber die elasttizitat poroser medien, Vier. der Natur Gesellschaft, 96, 1–23, 1951.

    Google Scholar 

  • Geller, J. T., M. B. Kowalsky, P. K. Seifert and K. T. Nihei, Acoustic detection of immiscible liquids in sand, Geophysical Research Letters, 27(3), 417–420, 2000.

    Article  Google Scholar 

  • Geller, J.T. and L.R. Myer, Ultrasonic imaging of organic liquid contaminants in unconsolidated porous media, Journal of Contaminant Hydrology, 19(3), 1995.

    Google Scholar 

  • Henry-Poulter, S.A., An investigation of transport properties in natural soils using electrical resistance tomography, Unpublished PhD Thesis, Lancaster University, U.K., 1996.

    Google Scholar 

  • Henry-Poulter, S.A., M.Z. Abdullah, A.M. Binley and F.J. Dickin, Electrical impedance tomography of tracer migration in soils, In: Computational methods and Experimental Measurements IV, Vol 1: Heat and Fluid Flow, by Brebbia and Carlomagno, eds., Computational Mechanics Publications, pp. 101–115, 1993.

    Google Scholar 

  • Hill III, E.H., L.L. Kupper, and C.T. Miller, Evaluation of path-length estimators for characterizing multiphase systems using polyenergetic x-ray absorption, Soil Science, 167(11), 703–719, 2002.

    Article  Google Scholar 

  • Illangasekare, T.H., E.J. Armbruster III, and D.N. Yates, Non-aqueous-phase fluids in heterogeneous aquifers—Experimental study, Journal of Environmental Engineering, 121(8), 571–579, 1995.

    Article  Google Scholar 

  • Imhoff, P.T., Dissolution of a nonaqueous phase liquid in saturated porous media, PhD Thesis, Princeton University, 1992.

    Google Scholar 

  • Imhoff, P.T., S.N. Gleyzer, J.F. McBride, L.A. Vancho, I. Okuda, and C.T. Miller, Cosolvent-enhanced remediation of residual dense nonaqueous phase liquids: Experimental investigation, Environmental Science & Technology, 29(8), 1966–1976, 1995.

    Article  Google Scholar 

  • Keers, H., D.W. Vasco and L.R. Johnson, Viscoacoustic crosswell imaging using asymptotic waveforms, Geophysics, 66(3), 861–870, 2001.

    Article  Google Scholar 

  • Knight, J.H. Sensitivity of time domain reflectometry measurements to lateral variations in soil water content, Water Resour. Res., 28, 2345–2352, 1992.

    Article  Google Scholar 

  • Knoll, G.F., Radiation Detection and Measurement, John Wiley and Sons, New York, NY, 1979.

    Google Scholar 

  • Kuster, G.T., and M.N. Toksöz, Velocity and attenuation of seismic waves in two-phase media; Part I—Theoretical formulations, Geophysics, 39(5), 587–606, 1974.

    Article  Google Scholar 

  • Li, X., L.R. Zhong, and L.J. Pyrak-Nolte, Physics of partially saturated porous media: Residual saturation and seismic-wave propagation, Annual Review of Earth & Planetary Sciences, 29, 419–460, 2001.

    Article  Google Scholar 

  • Lo, T-w., and P.L. Inderwiesen, Fundamentals of Seismic Tomography, Geophysical Monograph Series, #6, Society of Exploration Geophysicists, Tulsa, OK, 1994.

    Google Scholar 

  • Mavko, G., and T. Mukerji, Bounds on low-frequency seismic velocities in partially saturated rocks, Geophysics, 63(3), 918–924, 1998.

    Article  Google Scholar 

  • McKenna, J., D. Sherlock, and B. Evans, Time-lapse 3-D seismic imaging of shallow subsurface contaminant flow, Journal of Contaminant Hydrology, 53, 133–150, 2001.

    Article  Google Scholar 

  • Miller, C.T., E.H. Hill, III, and M. Moutier, Remediation of DNAPL-contaminated subsurface systems using density-motivated mobilization. Environmental Science & Technology, 34(4), 719–724, 2000.

    Article  Google Scholar 

  • Moreno-Barbero, E., Evaluation of partitioning inter-well tracer tests for character-ization of DNAPL pools, PhD Dissertation, Colorado School of Mines, Golden, Colorado, in submission.

    Google Scholar 

  • Nissen, H.H., P.A. Ferré, and P. Moldrup, The transverse sample area of two-and three-rod time domain reflectometry probes: dielectric permittivity Water Resour. Res., 38(10), No. 1289, 2003.

    Google Scholar 

  • Okuda, I., J.F. McBride, S.N. Gleyzer, and C.T. Miller, An investigation of physicochemical transport processes affecting the removal of residual DNAPL by nonionic surfactant solutions. Environmental Science & Technology, 30(6), 1852–1860, 1996.

    Article  Google Scholar 

  • Robinson D.A., S.B. Jones, J.M. Wraith, D. Or, and S.P. Friedman, A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry, Vadose Zone Journal, 2, 444–475, 2003.

    Google Scholar 

  • Santamarina, J.C., Soils and Waves, in collaboration with K.A. Klein and M.A. Fam, John Wiley & Sons, Ltd., Chichester, West Sussex, England, 2001.

    Google Scholar 

  • Seifert, P.K., J.T. Geller and L.R. Johnson, Effect of P-wave scattering on velocity and attenuation in unconsolidated sand saturated with immiscible liquids, Geophysics, 63(1), 161–170, 1998.

    Article  Google Scholar 

  • Slater, L., A. Binley, W. Daily and R. Johnson, Cross-hole electrical imaging of a controlled saline tracer injection, J. Appl. Geophysics, 44, 85–102, 2000.

    Article  Google Scholar 

  • Slater, L., A. Binley, R. Versteeg, R., G. Cassiani, R. Birken, and S. Sandberg, A 3D ERT study of solute transport in a large experimental tank, J. Appl. Geophysics, 49(4), 211–229, 2002,.

    Article  Google Scholar 

  • Olsen, P.A., A. Binley, S. Henry-Poulter, and W. Tych, Characterising solute transport in undisturbed soil cores using electrical and x-ray tomographic methods, Hydrological Processes, 13, 211–221, 1999.

    Article  Google Scholar 

  • Topp, G.C., J.L. Davis, and A.P. Annan, Electromagnetic determination of soil water content: measurement in coaxial transmission lines, Water Resour. Res., 16, 574–582, 1980.

    Article  Google Scholar 

  • Topp, G.C., J.L. Davis and A.P. Annan, Electromagnetic determination of soil water content using TDR: I. Applications to wetting fronts and steep gradients, Soil Sci. Soc. Am. J., 46, 672–678, 1982.

    Article  Google Scholar 

  • Topp, G.C., and P.A. Ferré, eds., Water content measurement methods, In: Methods of Soil Analysis, American Society of Agronomy, 2002.

    Google Scholar 

  • Wang, M, W. Yin and N. Holliday, A highly adaptive electrical impedance sensing system for flow measurement, Measurement Science & Technology, 13(12), 1884–1889, 2002.

    Article  Google Scholar 

  • Webster, J.G., ed., Electrical Impedance Tomography, Adam Hilger, Bristol, England, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Ferré, T.P.A., Binley, A., Geller, J., Hill, E., Illangasekare, T. (2005). Hydrogeophysical Methods at the Laboratory Scale. In: Rubin, Y., Hubbard, S.S. (eds) Hydrogeophysics. Water Science and Technology Library, vol 50. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3102-5_15

Download citation

Publish with us

Policies and ethics