Skip to main content

Complexity, Fractal Dimensions and Topological Entropy in Dynamical Systems

  • Conference paper
Book cover Chaotic Dynamics and Transport in Classical and Quantum Systems

Part of the book series: NATO Science Series ((NAII,volume 182))

Abstract

Instability of orbits in dynamical systems is the reason for their complex behavior. Main characteristics of this complexity are ε-complexity, topological entropy and fractal dimension. In this two lectures we give a short introduction to ideas, results and machinery of this part of modern nonlinear dynamics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abel, L. Biferale, M. Cencini, M. Falcione, D. Vergni and A. Vulpiani, Exit time and ε-entropy for dynamical systems, tochastic processes and turbulence, Physica D, 147 (2000) 12–35

    Google Scholar 

  2. V. Afraimovich, A. Maass and J. Urías, Symbolic dynamics for sticky sets in Hamiltonian systems, Nonlinearity 13 (2000) 1–21.

    Article  Google Scholar 

  3. V. Afraimovich, J. Schmeling, E. Ugalde and J. Urías, Spectra of dimensions for Poincaré recurrences, Discrete and Continuous Dynamical Systems 6 (2000) 901–914.

    Google Scholar 

  4. V. Afraimovich, J.-R. Chazottes and B. Saussol, Pointwise dimensions for Poincaré recurrences associated with maps and special flows, Discrete and Continuous Dyn. Syst. 9 (2003) 263–280.

    Google Scholar 

  5. V. A. Afraimovich, M. Courbage, B. Fernandez and A. Morante. Directional entropy in lattice dynamical systems in: Mathematical Problems in Nonlinear Dynamics, ed. by L. M. Lerman and L. P. Shilnikov. University of Nijni Novgorod Press, (2002), 9–30.

    Google Scholar 

  6. V. Afraimovich, Pesin’s dimension for Poincaré recurrences. Chaos 7, pp. 12–20 (1997).

    Article  PubMed  Google Scholar 

  7. V. Afraimovich, Poincaré recurrences of coupled subsystems in synchronized regimes, Taiwanese J. of Math. 3 (1999) 139–161.

    Google Scholar 

  8. V. Afraimovich, S.-B. Hsu, Lectures on Chaotic Dynamical Systems, AMS Studies in Advanced Mathematics, 28 International Press, 2003

    Google Scholar 

  9. V. Afraimovich and G.M. Zaslavsky, Sticky orbits of chaotic Hamiltonian dynamics, 519–532 Lecture Notes in Physics, 511 (1998) pp59–82

    Google Scholar 

  10. V. Afraimovich, G. M. Zaslavsky, Space-time complexity in Hamiltonian dynamics, Chaos, 13 (2003) 519–532

    Article  PubMed  Google Scholar 

  11. V. Afraimovich and L. Glebsky, Measures of ε-complexity, Preprint, math.DS/0312042 in http://xxx.land.gov

    Google Scholar 

  12. V.M. Alekseyev, Quasirandom Dynamical Systems I: Quasirandom Diffeomorphisms, MAth. USSR Sbornik, 5, (1968), 73–128.

    Google Scholar 

  13. R. Badii and A. Politi, Complexity, Cambridge University Press, Cambridge, 1999.

    Google Scholar 

  14. L. Barreira, A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems, Ergod. Theory and Dyn. Syst., 16 (1996) 871–928.

    Google Scholar 

  15. S. Benkadda and G.M. Zaslavsky (Eds.) Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas, Lecture Notes in Physics, 511 (1998).

    Google Scholar 

  16. F. Blanchard, B. Host, A. Maass, Topological complexity, Ergod. Theory Dyn. Syst. 20 (2000), 641–662.

    Article  Google Scholar 

  17. G. Boffetta, M. Cencini, M. Falcione and A. Vulpiani, Predictability: A way to characterize complexity, Phys. Rep. 356 (2002), 367–474.

    Article  Google Scholar 

  18. N. Bourbaki, Elements of mathematics. General topology. Part 1. Hermann, Paris, 1966.

    Google Scholar 

  19. R. Bowen, Topological entropy for non-compact sets, Trans. Amer. Math. Soc. 184 (1973), 125–136.

    Google Scholar 

  20. R. Bowen, Hausdorff dimension of quasi-circles. Publ. Math. IHES, 50 (1979), 259–273.

    Google Scholar 

  21. T. Bohr and D. Rand, Entropy function for characteristic exponents, Physica 25D (1987), 387–398.

    Google Scholar 

  22. H. Bruin, Dimensions of recurrence times and minimal subshifts, in: Dynamical systems: from crystal to chaos, (J.-M. Gambaudo, P. Hubert, P. Tisseur and S. Vaienti, Eds.) World Scientific (2000) 117–124.

    Google Scholar 

  23. F. Ceccone, M. Falcione and A. Vulpiani, Complexity Charachterization of dynamical Systems through Predictability. Preprint (2003)

    Google Scholar 

  24. E. I. Dinaburg, Relation between diferent entropy characteristics of dynamical systems, Math. Izvestia AN SSSR, 35, (1971), 324–366.

    Google Scholar 

  25. H. Furstenberg, Disjointness in ergodic theory, minimal sets and a problem in Diophantine approximation, Mathematical Systems Theory 1 (1967), 1–49.

    Article  Google Scholar 

  26. Furstenberg H, Amer. J. Math. 85 (1963), 477.

    Google Scholar 

  27. P.R. Halmos, Measure theory, Springer-Verlag, 1974.

    Google Scholar 

  28. A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, London New York (1995).

    Google Scholar 

  29. A.N. Kolmogorov and V.M. Tikhomirov, ε-entropy and ε capacity of sets in functional spaces, Usp. Mat. Nauk. 14 (1959), 3–86.

    Google Scholar 

  30. P. Kurka and A. Maass, Recurrence dimension in Toeplitz subshifts, in: Dynamical systems: from crystal to chaos, (J.-M. Gambaudo, P. Hubert, P. Tisseur and S. Vaienti, Eds.) World Scientific (2000) 165–175

    Google Scholar 

  31. M. I. Malkin, Rotation intervals and the dynamics of Lorentz-type mappings, Selecta Mathematica Sovietica, 8, (1991) 267–275.

    Google Scholar 

  32. J. Milnor, On the entropy geometry of cellular automata, Complex Syst. 2 (1997) 357–385

    Google Scholar 

  33. V. Penné, B. Saussol, S. Vaienti, Dimensions for recurrence times: topological and dynamical properties. Discrete and Continuous Dynamical Systems 5 (1999) 783–798.

    Google Scholar 

  34. Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications. Chicago Lectures in Mathematics, The University of Chicago Press (1997).

    Google Scholar 

  35. Ya.B. Pesin and H. Weiss, A multifractal analysis of equilibrium measures for conformal expanding maps and Markov Moran geometric constructions, J. Stat. Phys. 86:1–2 (1997) 233–275.

    Google Scholar 

  36. D. Ruelle, Repellers for real analytic maps, Erg. Th. Dyn. Syst. 2 (1982), 99–107.

    Google Scholar 

  37. H. J. Ryser, Combinatorial mathematics, The Carus Mathematical Monographs, 15 The Mathematical Association of America, 1963.

    Google Scholar 

  38. B. Saussol, S. Troubetzkoy and S. Vaienti, Recurrences, dimensions and Lyapunov exponents, J. of Stat. Physics, 106, (2002), 623–634.

    Article  Google Scholar 

  39. F. Takens, Detecting Strange Attractors in Turbulence, Lecture Notes in Maths Springer-Verlag, Berlin, 898 (1980), 336–382

    Google Scholar 

  40. F. Takens, Distinguishing deterministic and random systems, Nonlinear Dynamics and Turbulence, G.I. Barrenblatt, G. Iooss, D.D. Joseph, eds., Pitman, (1983), 314–333

    Google Scholar 

  41. Peter Walters, A variational principle for the pressure of continuous transformations, Amer. J. Math. 97 (1976) 937–971.

    Google Scholar 

  42. Peter Walters, An Introduction to Ergodic Theory, Springer Graduate Texts in Math 79, New York (1982).

    Google Scholar 

  43. G.M. Zaslavsky Physics of Chaos in Hamiltonian Systems, Imperial College Press, London-Singapore (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Affraimovich, V., Glebsky, L. (2005). Complexity, Fractal Dimensions and Topological Entropy in Dynamical Systems. In: Collet, P., Courbage, M., Métens, S., Neishtadt, A., Zaslavsky, G. (eds) Chaotic Dynamics and Transport in Classical and Quantum Systems. NATO Science Series, vol 182. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2947-0_3

Download citation

Publish with us

Policies and ethics