Skip to main content

Biomolecules from Living and Fossil Metasequoia: Biological and Geological Applications

  • Chapter
The Geobiology and Ecology of Metasequoia

Part of the book series: Topics in Geobiology ((TGBI,volume 22))

Abstract

Biomolecules from living and fossil Metasequoia Miki provide insight into the biological and geological history of the genus, as well as its phylogeny and evolution, population structure and molecular taphonomy. Chemically labile biomolecules such as protein and nucleotide sequences from Metasequoia glyptostroboides Hu et Cheng have reconfirmed the systematic position of Metasequoia as the sister taxon to Sequoia Endlicher and Sequoiadendron J. Buchholz. These three genera form the subfamily Sequoioideae, which is one of the basal groups of the Taxodiaceae-Cupressaceae complex. Relative rate testing based on different gene sequences suggests an evolutionary rate slow down in the Sequoioideae lineage. Non-sequence based molecular studies indicate a low overall genetic diversity and a lack of spatial genetic structure in its native population in southern China. An isolated tree in Paomu, Hunan Province was found to contain both molecular and morphological plesiomorphic characteristics, providing important clues to its evolutionary history. Moreover, given the importance of these data, critical conservation issues are raised regarding the management and preservation of the genus. Molecular and biochemical investigations of ancient biomolecules from well-preserved Tertiary fossil Metasequoia remains reveal the preservation of labile biomolecules such as carbohydrates that are normally absent from the Cenozoic fossil record. Comparative geochemical and SEM analyses of well preserved fossil specimens revealed the sources of these chemically unstable biomolecules and suggests that they may carry important structural functions to support the integrity of plant fossil morphology. These ancient biomolecules from fossil Metasequoia also offer valuable information regarding the environmental factors controlling the preservation of labile biomolecules and possible origins of homologous series of n-alk-1-ene/n-alkane pairs preserved in the geological record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References Cited

  • Allison, P.A. & D.E.G. Briggs. 1991. Taphonomy of nonmineralized tissues. Pp. 26–58. In P.A. Allison & D.E.G. Briggs (eds). Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York.

    Google Scholar 

  • Anderson, K.B. & B.A. LePage. 1995. Analysis of fossil resins from Axel Heiberg Island, Canadian Arctic. American Chemical Society Symposium Series 617: 170–192.

    Google Scholar 

  • Barghoorn, E.S. & W. Spackman. 1950. Geological and botanical study of the Brandon lignite and its significance in coal petrology. Economic Geology 45: 344–357.

    Google Scholar 

  • Basinger, J.F. 1991. The fossil forest of the Buchanan Lake Formation (Early Tertiary), Axel Heiberg Island, Canadian Arctic Archipelago: Preliminary floristics and paleoclimate. Geological Survey of Canada, Bulletin 403: 39–66.

    Google Scholar 

  • Benner, R., P.G. Hatcher & J.I. Hedges. 1990. Early diagenesis of mangrove leaves in a tropical estuary: Bulk chemical characterization using solid-state13C NMR and elemental analyses. Geochimica et Cosmochimica Acta 54: 2003–2013.

    Google Scholar 

  • Benner, R., A.E. Maccubbin & R. Hodson. 1984. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Applied and Environmental Microbiology 47: 998–1004.

    Google Scholar 

  • Blanchette, R.A., K.R. Cease, A. Abad & T. Burnes. 1991. Ultrastructural characterization of wood from Tertiary fossil forest in the Canadian Arctic. Canadian Journal of Botany 69: 560–568.

    Google Scholar 

  • Boivin, R., M. Richard, D. Beauseigle, J. Bousquet & G. Bellemare. 1996. Phylogenetic inferences from chloroplast chlB gene sequences of Nephrolepis exaltata (Filicopsida), Ephedra altissima (Gnetopsida), and diverse land plants. Phylogenetic Evolution 6: 19–29.

    Google Scholar 

  • Boon, J.J. 1991. Analytical pyrolysis mass spectrometry: New vistas opened by temperature-resolved in-source PYMS. International Journal of Mass Spectrometry and Ion Processes 118/119: 755–787.

    Google Scholar 

  • Boon, J.J., R.G. Wetzel & G.L. Godshalk. 1982. Pyrolysis mass spectrometry of some Scirpus species and their decomposition products. Limnology and Oceanography 27: 839–848.

    Google Scholar 

  • Bowe, L. M., G. Coat & C. W. de Pamphilis. 2000. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proceedings of the National Academy of Science, USA 97: 4092–4097.

    Google Scholar 

  • Boyd, A. 1990. The Thyra Ø flora: Toward an understanding of the climate and vegetation during the early Tertiary in the high arctic. Review of Paleobotany & Palynology 62: 189–203.

    Google Scholar 

  • Briggs, D.E.G. 1999. Molecular taphonomy of animal and plant cuticles: Selective preservation and diagenesis. Philosophical Transactions of the Royal Society of London B354: 7–18.

    Google Scholar 

  • Briggs, D.E.G., R.P. Evershed & M.J. Lockheart. 2000. The biomolecular paleontology of continental fossils. Paleobiology Supplement 4: 169–193.

    Google Scholar 

  • Briggs, D.E.G., R.P. Evershed & B.A. Stankiewicz. 1998. The molecular preservation of fossil arthropod cuticles. Ancient Biomolecules 2: 135–147.

    Google Scholar 

  • Brunsfeld, S.J., P.S. Soltis, D.E. Soltis, P.A. Gadek, C.J. Quinn, D.D. Strenge & T.A. Ranker. 1994. Phylogenetic relationships among genera of the conifer families Taxodiaceae and Cupressaceae: Evidence from rbcL sequences. Systematic Botany 19: 253–262.

    Google Scholar 

  • Chaney, R.W. 1951. A revision of fossil Sequoia and Taxodium in western North America based on the recent discovery of Metasequoia. Transactions of the American Philosophical Society, New Series 40: 171–239.

    Google Scholar 

  • Chase, M.W., D.E. Soltis, R.G. Olmstead, D. Morgan, D.H. Les, B.D. Mishler, M.R. Duvall, R.A. Price, H.G. Hills, Y-L. Qiu, K.A. Kron, J.H. Rettig, E. Conti, J.D. Palmer, J.R. Manhart, K.J. Sytsma, H.J. Michaels, W.J. Kress, K.G. Karol, W.D. Clark, M. Hedren, B.S. Gaut, R.K. Jansen, K-J. Kim, C.F. Wimpee, J.F. Smith, G.R. Furnier, S.H. Strauss, Q-Y. Xiang, G.M. Plunkett, P.S. Soltis, S.M. Swensen, S.E. Williams, P.A. Gadek, C.J. Quinn, L.E. Eguiarte, E. Golenberg, G.H. Learn, Jr., S.W. Graham, S.C.H. Barrett, S. Dayanandan & V.A. Albert. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Annals of Missouri Botanical Garden 80: 526–580.

    Google Scholar 

  • Christie, R.L. & N.J. McMillan. 1991. Tertiary fossil forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago. Geological Survey of Canada, Bulletin 403: 1–226.

    Google Scholar 

  • Chu, K.L. & W.S. Cooper. 1950. An ecological reconnaissance in the native home of Metasequoia glyptostroboides. Ecology 31: 260–278.

    Google Scholar 

  • Collinson, M.E., B. Mösle, P. Finch, A.C. Scott & R. Wilson. 1998. The preservation of plant cuticle in the fossil record: A chemical and microscopical investigation. Ancient Biomolecules 2: 251–265.

    Google Scholar 

  • de Leeuw, J.W., P.F. van Bergen, B.G.K. van Aarssen, J.-P.L.A. Gatelier, J.S. Sinninghe Damsté & M.E. Collinson. 1991. Resistant biomacromolecules as major contributors to kerogen. Philosophical Transactions of the Royal Society of London B333: 329–337.

    Google Scholar 

  • Eckenwalder, J.E. 1976. Re-evaluation of Cupressaceae and Taxodiaceae: A proposed merger. Madroño 23: 237–256.

    Google Scholar 

  • Enoki, A., S. Takahama & K. Kitao. 1977. The extractives of Metasequoia, Metasequoia glyptostroboides Hu et Cheng. I. The isolation of metasequoirin-A, athrothaxin, and agath-aresinol from the heartwood. II. The isolation of hydroxyathrotaxin, metasequirin-B, and hydroxymetasequirin-A. Journal of Japan Wood Research Society 23:579–593

    Google Scholar 

  • Eglinton, G. & G.A. Logan. 1991. Molecular preservation. Philosophical Transactions of the Royal Society of London B333: 315–328.

    Google Scholar 

  • Francis, J.E. 1991. The dynamics of polar fossil forests: Tertiary fossil forest of Axel Heiberg Island, Canadian Arctic Archipelago. Geological Survey of Canada, Bulletin 403: 29–38.

    Google Scholar 

  • Freeman, S. & J.C. Herron. 1998. Evolutionary Analysis. Prentice Hall, Upper Saddle River, New Jersey.

    Google Scholar 

  • Fulling, E.G. 1976. Metasequoia—fossil and living. The Botanical Review 42: 215–315.

    Google Scholar 

  • Gadek, P.A., D.L. Alpers, M.M. Heslewood & C.J. Quinn. 2000. Relationships within Cupres-saceae sensu lato: A combined morphological and molecular approach. American Journal of Botany 87: 1044–1057.

    PubMed  Google Scholar 

  • Gõni, M. & J.I. Hedges. 1990. The diagenetic behavior of cutin acids in buried conifer needles and sediments from a coastal marine environment. Geochimica et Cosmochimica Acta 54: 3083–3093.

    Google Scholar 

  • Grasset, L., C. Guignard & A. Ambles. 2001. Free and esterified aliphatic carboxylic acids in humin and humic acids from a peat sample as revealed by pyrolysis with tetramethylammonium hydroxide or tetraethylammonium acetate. Organic Geochemistry 33: 181–188.

    Google Scholar 

  • Grattan, D.W. 1991. The conservation of specimens from the Geodetic Hills fossil forest site, Canadian Arctic Archipelago. Geological Survey of Canada, Bulletin 403: 213–227.

    Google Scholar 

  • Greenwood, D.R. & S.L. Wing. 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23: 1044–1048.

    Google Scholar 

  • Hager, K.P. & C. Wind. 1997. Two ways of legumin-precursor processing in conifers: Characterization and evolutionary relationships of Metasequoia cDNAs representing two divergent legumin gene subfamilies. European Journal of Biochemistry 246: 763–771.

    PubMed  Google Scholar 

  • Hedges, J.I., G.L. Cowie, J.R. Ertel, R.J. Barbour & P.G. Hatcher. 1985. Degradation of carbohydrates and lignins in buried woods. Geochimica et Cosmochimica Acta 49: 701–711.

    Google Scholar 

  • Hedges, J.I. & K. Weliky. 1989. Diagenesis of conifer needles in a coastal marine environment. Geochimica et Cosmochimica Acta 53: 2659–2973.

    Google Scholar 

  • Hori, H., B.L. Lim & S. Osawa. 1985. Evolution of green plants as deduced from 5S rRNA sequences. Proceedings of the National Academy of Science, USA 82: 820–823.

    Google Scholar 

  • Jagels, R. & M.E. Day. 2004. The adaptive physiology of Metasequoia to Eocene high-latitude environments. Pp.401–425. In A.R. Hemsley & I Poole (eds.). The Evolution of Plant Physiology: From Whole Plants to Ecosystems. Elsevier, London.

    Google Scholar 

  • Jahren, H.A. & L.S.L. Sternberg. 2002. Eocene meridional weather patterns reflected in the oxygen isotopes of Arctic fossil wood. GSA Today 12: 4–19.

    Google Scholar 

  • Jahren, H.A. & L.S.L. Sternberg. 2003. Humidity estimate for the middle Eocene Arctic rain forest. Geology 31: 463–466.

    Google Scholar 

  • Kalkreuth, W.D., C.L. Riediger, D.J. McIntyre, R.J.H. Richardson, M.G. Fowler & D. Marchioni. 1996. Petrological, palynological and geochemical characteristics of Eureka Sound Group Coals (Stenkul Fiord, Southern Ellesmere Island, Arctic Canada). International Journal of Coal Geology 30: 151–182.

    Google Scholar 

  • Karpinska, B., S. Karpinski & J. Hallgren. 1997. The chiB gene encoding a subunit of light-independent protochlorophyllide reductase is edited in chloroplasts of conifers. Current Genetics 31: 343–347.

    PubMed  Google Scholar 

  • Kuser, J.E., D.L. Sheely & D.R. Hendricks. 1997. Genetic variation in two ex situ collections of the rare Metasequoia glyptostroboides (Cupressaceae). Silvae Genetica 46: 258–264.

    Google Scholar 

  • Kusumi, J., Y. Tsumura, H. Yoshimaru & H. Tachida. 2000. Phylogenetic relationships in Taxodiaceae and Cupressaceae sensu stricto based on matK gene, chlL gene, trnL-trnF IGS region, and trnL intron sequences. American Journal of Botany 87: 1480–1488.

    PubMed  Google Scholar 

  • Kusumi, J., Y. Tsumura, H. Yoshimaru & H. Tachida. 2002. Molecular evolution of nuclear genes in Cupressaceae, a group of conifer trees. Molecular Biology and Evolution 19: 736–747.

    PubMed  Google Scholar 

  • Leng, Q., H. Yang, Q. Yang & J. Zhou. 2001. Variation of cuticle micromorphology in native population of Metasequoia glyptostroboides (Taxodiaceae). Botanical Journal of the Linnean Society 136: 207–219.

    Google Scholar 

  • Li, C. & Q. Yang. 2002. Divergence time estimates for major lineages of Cupressaceae (s.l.). Acta Phytotaxonomica Sinica 40: 323–333.

    Google Scholar 

  • Li, C. & Q. Yang. 2003a. Polymorphism of ITS sequences of nuclear ribosomal DNA in Metasequoia glyptostroboides. Journal of Genetics and Molecular Biology 13: 264–271.

    Google Scholar 

  • Li, C. & Q. Yang. 2003b. Phylogenetic relationships among the genera of Taxodiaceae and Cupressaceae from 28S rDNA sequences. Hereditis 25: 177–180.

    Google Scholar 

  • Li, C., Q. Yang, J. Zhou, S. Fan & H. Yang. 1999. RAPD analysis of genetic diversity in the natural population of Metasequoia glyptostroboides, Central China. Acta Scientiarum Naturalium Universitatis Sunyatseni 38: 59–63.

    Google Scholar 

  • Li, Z., J. Gong, Y. Wang & H. Huang. 2003a. Spatial structure of AFLP genetic diversity of remnant populations of Metasequoia glyptostroboides (Taxodiaceae). Biodiversity Science 11: 265–275.

    Google Scholar 

  • Li, X., H. Huang & J. Li. 2003b. Genetic diversity of the relict plant Metasequoia glyptostroboides. Biodiversity Science 11: 100–108.

    Google Scholar 

  • Lindhal, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–715.

    PubMed  Google Scholar 

  • Liu, Y., C. Li & Y. Wang. 1999. Studies on fossil Metasequoia from north-east China and their taxonomic implications. Botanical Journal of the Linnean Society 130: 267–297.

    Google Scholar 

  • Lockheart, M.J., P.F. van Bergen & R.P. Evershed. 2000. Chemotaxonomic classification of fossil leaves from the Miocene Clarkia lake deposit, Idaho, USA based on n-alkyl lipid distributions and principal component analyses. Organic Geochemistry 31: 1223–1246.

    Google Scholar 

  • McCobb, L.M.E., D.E.G. Briggs, R.P. Evershed, A.R. Hall & R.A. Hall. 2001. Preservation of fossil seeds from a 10th Century AD Cess pit at Coppergate, York. Journal of Archaeological Science 28: 929–940.

    Google Scholar 

  • McIver, E.E. & J.F. Basinger. 1999. Early Tertiary floral evolution in the Canadian high Arctic. Annals of the Missouri Botanical Garden 86: 523–545.

    Google Scholar 

  • Mösle, B., P. Finch, M.E. Collinson & A.C. Scott. 1997. Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography-mass spectrometry and electron microscopy. Journal of Analytical and Applied Pyrolysis 40: 585–597.

    Google Scholar 

  • Neyland, R. & L.E. Urbatsch. 1996. The ndhF chloroplast gene detected in all vascular plant divisions. Planta 200: 273–277.

    PubMed  Google Scholar 

  • Nguyen Tu, T.T., S. Derenne, C. Largeau, A. Mariotti & H. Bocherens. 2001. Evolution of the chemical composition of Ginkgo biloba internal and external leaf lipids through the early stages of degradation. Organic Geochemistry 32: 45–55.

    Google Scholar 

  • Nip, M., E. Tegelaar, J.W. de Leeuw, P.A. Schenck & P.J. Holloway 1986. Analysis of modern and fossil plant cuticles by Curie-point pyrolysis-gas chromatography and Curie-point pyrolysis-gas chromatography-mass spectrometry: Recognition of a new, highly aliphatic and resistant biopolymer. Organic Geochemistry 10: 769–778.

    Google Scholar 

  • Olmstead, R.G. & J.D. Palmer. 1994. Chloroplast DNA systematics: A review of methods and data analysis. American Journal of Botany 81: 1205–1224.

    Google Scholar 

  • Opsahl, S. & R. Benner. 1995. Early diagenesis of vascular plant tissues: Lignin and cutin decomposition and biogeochemical implications. Geochimica et Cosmochimica Acta 59: 4889–4904.

    Google Scholar 

  • Otto, A. & V. Wilde. 2001. Sesqui-, di-, and triterpenoids as chemosystematic markers in extant conifers—a review. The Botanical Review 67: 141–238.

    Google Scholar 

  • Pääbo, S. & A.C. Wilson. 1991. Miocene DNA sequences-a dream come true? Current Biology 1: 45–46.

    PubMed  Google Scholar 

  • Peulve, S., J.W. de Leeuw, M.A. Baas & A. Saliot. 1996. Characterization of macromolecular organic matter in sediment traps from the northwestern Mediterranean Sea. Geochimica et Cosmochimica Acta 60: 1239–1259.

    Google Scholar 

  • Pouwels, A.D., G.B. Eijkel & J.J. Boon. 1989. Curie-point pyrolysis-capillary gas chromatography-High resolution mass spectrometry of microcrystalline cellulose. Journal of Analytical and Applied Pyrolysis 14: 237–280.

    Google Scholar 

  • Price, R.A. & J.M. Lowenstein. 1989. An immunological comparison of the Sciadopityaceae, Taxodiaceae, and Cupressaceae. Systematic Botany 14: 141–149.

    Google Scholar 

  • Qiu, Y.L., J. Lee, F. Bernasconi-Quadroni, D.E. Soltis, P.S. Soltis, M. Zanis, E.A. Zimmer, Z. Chen, V. Savolainen & M.W. Chase. 1999. The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407.

    PubMed  Google Scholar 

  • Ricketts, B.D. & R.A. Stephenson. 1994. The demise of Sverdrup basin: Late Cretaceous-Paleogene sequence stratigraphy and forward modeling. Journal of Sedimentary Research B64: 516–530.

    Google Scholar 

  • Royer, D.L., S.L. Wing, D.J. Beerling, W. Jolley, P.L. Koch, L.J. Hickey & R.A. Berner. 2001. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292: 2310–2313.

    PubMed  Google Scholar 

  • Royer, D.L., C.P. Osborne & D.J. Beerling. 2002. High CO2 increases the freezing sensitivity of plants: Implications for paleoclimatic reconstructions from fossil floras. Geology 30: 963–966.

    Google Scholar 

  • Royer, D.L., C.P. Osborne & D.J. Beerling. 2003. Carbon loss by deciduous trees in a CO2-rich ancient polar environment. Nature 424: 60–62.

    PubMed  Google Scholar 

  • Saiki, R.K., D.H. Gelfand, S. Stoffel, S.J. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis & H.A. Erlich. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

    PubMed  Google Scholar 

  • Sanger, F., S. Nicklen, & A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Science, USA 74: 5463–5467.

    Google Scholar 

  • Savard, L., P. Li, S.H. Strauss, M.W. Chase, M. Michaud & J. Bousquet. 1994. Chloroplast and nuclear gene sequences indicate Late Pennsylvanian time for the last common ancestor of extant seed plants. Proceedings of the National Academy of Science, USA 91: 5163–5167.

    Google Scholar 

  • Savolainen, V., M.W. Chase, S.B. Hoot, C.M. Morton, D.E. Soltis, C. Bayer, M.F. Fry, A.Y. de Bruijn, S. Sullivan & Y.L. Qiu. 2000. Phylogenetics of flowering plants based on combined analysis of plastid atpB and rbcL gene sequences. Systematic Biology 49: 306–362.

    PubMed  Google Scholar 

  • Schadt, C.W., A.P. Martin, D.A. Lipson & S.K. Schmidt. 2003. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301: 1359–1361.

    PubMed  Google Scholar 

  • Schlarbaum, S.E., L.C. Johnson & T. Tsuchiya. 1983. Chromosome studies of Metasequoia glyptostroboides and Taxodium distichum. Botanical Gazette 144: 559–565.

    Google Scholar 

  • Schlarbaum, S.E. & T. Tsuchiya. 1984. Cytotaxonomy and phylogeny in certain species of Taxodiaceae. Plant Systematics and Evolution 147: 29–54.

    Google Scholar 

  • Schlarbaum, S.E., T. Tsuchiya & L.C. Johnson. 1984. The chromosomes and relationships of Metasequoia and Sequoia (Taxodiaceae) an update. Journal of Arnold Arboretum 65: 251–254.

    Google Scholar 

  • Schlesinger, W.H. & J. Lichter. 2001. Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature 411: 466–469.

    PubMed  Google Scholar 

  • Skoog, D.A., E.J. Holler & T.A. Nieman. 1998. Principles of Instrumental Analysis. Saunders College Publishing, Philadelphia, Pennsylvania.

    Google Scholar 

  • Smiley, C.J., J. Gray & L.M. Huggins. 1975. Preservation of Miocene fossils in unoxidized lake deposits, Clarkia, Idaho. Journal of Paleontology 49: 833–844.

    Google Scholar 

  • Smiley, C.J. & W.C. Rember. 1981. Paleoecology of the Miocene Clarkia Lake (Northern Idaho) and Its Environs. Pp. 551–590. In J. Gray, A.J. Boucot & W.B.N. Berry (eds). Communities of the Past. Hutchinson Ross Publishing, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Smiley, C.J. & W.C. Rember. 1985. Physical setting of the Miocene Clarkia fossil beds, northern Idaho. Pp.11–30. In C. J. Smiley (ed). Late Cenozoic History of the Pacific Northwest. Pacific Division of American Association for the Advancement of Science, San Francisco, California.

    Google Scholar 

  • Soltis, P.S., D.E. Soltis & C.J. Smiley. 1992. An rbcL sequence from a Miocene Taxodium (bald cypress). Proceedings of the National Academy of Science, USA 89: 449–451.

    Google Scholar 

  • Spiker, E.C. & P.G. Hatcher. 1987. The effects of early diagenesis on the chemical and stable carbon isotopic composition of wood. Geochimica et Cosmochimica Acta 51:1385–1391.

    Google Scholar 

  • Stankiewicz, B.A., D.E.G. Briggs, R.P. Evershed, M.B. Flannery & M. Wuttke. 1997. Preservation of chitin in 25-Million-year-old fossils. Science 276: 1541–1543.

    Google Scholar 

  • Stankiewicz, B.A., D.E.G. Briggs, R. Michels, M.E. Collinson, M.F. Flannery & R.P. Evershed. 2000. Alternative origin of aliphatic polymer in kerogen. Geology 28: 559–562.

    Google Scholar 

  • Stankiewicz, B.A., M. Mastalerz, M.A. Kruge, P.F. van Bergen & A. Sadowska. 1997. A comparative study of modern and fossil cone scales and seeds of conifers: A geochemical approach. New Phytologist 135: 375–393.

    Google Scholar 

  • Stankiewicz, B.A., A.C. Scott, M.E. Collinson, P. Finch, B. Möosle, D.E.G. Briggs & R.P. Ever-shed. 1998a. Molecular taphonomy of arthropod and plant cuticles from the Carboniferous of North America: Implication for the origin of kerogen. Journal of the Geological Society 155: 453–462.

    Google Scholar 

  • Stankiewicz, B.A., H.N. Poinar, D.E.G. Briggs, R. Evershed, P. & G.O. Poinar Jr. 1998b. Chemical preservation of plants and insects in natural resins. Proceedings of the Royal Society of London B265: 641–647.

    Google Scholar 

  • Stebbins, G.L. 1948. The chromosomes and relationship of Metasequoia and Sequoia. Science 108: 95–98.

    Google Scholar 

  • Stout, S.A. & J.J. Boon. 1994. Structural characterization of the organic polymers comprising a lignite’s matrix and megafossils. Organic Geochemistry 21: 953–970.

    Google Scholar 

  • Taiz, L. & E. Zeiger. 2002. Plant Physiology. Sinauer Associates, Inc., Sunderland, Massachusetts.

    Google Scholar 

  • Tegelaar, E.W., J.W. de Leeuw, C. Largeau, S. Derenne, H.R. Schulten, R. Muller, J.J. Boon, M. Nip & J.C.M. Sprenkels. 1989. Scope and limitation of several pyrolysis methods in the structural elucidation of macromolecular plant constituent in the leaf cuticle of Agave americana L. Journal of Analytical and Applied Pyrolysis 15: 29–54.

    Google Scholar 

  • Tegelaar, E.W., H. Kerp, H. Visscher, P.A. Schenck & J.W. de Leeuw 1991. Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology 17: 133–144.

    Google Scholar 

  • Tissot, B. & D.H. Welte. 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin.

    Google Scholar 

  • Tsumura, Y., K. Yoshimura, N. Tomaru & K. Ohba. 1995. Molecular phylogeny of conifers using RFLP analysis of PCR-amplified specific chloroplast genes. Theoretical Applied Genetics 91: 1222–1236.

    Google Scholar 

  • Tsumura, Y., Y. Suyama, K. Yoshimura, N. Shirato & Y. Mukai. 1997. Sequence-tagged-sites (STSs) of cDNA clones in Cryptomeria japonica and their evaluation as molecular markers in conifers. Theoretical Applied Genetics 94: 764–772.

    Google Scholar 

  • van Bergen, P.F., H.A. Bland, M.C. Horton & R.P. Evershed. 1997. Chemical and morphological changes in archaeological seeds and fruits during preservation by desiccation. Geochimica et Cosmochimica Acta 61: 1919–1930.

    Google Scholar 

  • van Bergen, P.F., M.E. Collinson & J.W. de Leeuw. 1996. Characterization of the insoluble constituents of propagule walls of fossil and extant water lilies: implication for the fossil cord. Ancient Biomolecules 1: 55–81.

    Google Scholar 

  • van der Heijden, E. & J.J. Boon. 1994. A combined pyrolysis mass spectrometric and light microscopic study of peatfied Calluna wood isolated from raised bog peat deposits. Organic Geochemistry 22: 903–919.

    Google Scholar 

  • Vos, P., R. Hgers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman & M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407–4414.

    PubMed  Google Scholar 

  • Webster, J.R. & E.F. Benfield. 1986. Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics 17: 567–594.

    Google Scholar 

  • Williams, C.J., A.H. Johnson, B.A. LePage, D.R. Vann & T. Sweda. 2003a. Reconstruction of Tertiary Metasequoia forests. II. Structure, biomass, and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29: 271–292.

    Google Scholar 

  • Williams, C.J., A.H. Johnson, B.A. LePage, D.R. Vann & K.D. Taylor. 2003b. Reconstruction of Tertiary Metasequoia forests. I. Test of a method for biomass determination based on stem dimensions. Paleobiology 29: 256–270.

    Google Scholar 

  • Williams, J.G.K., A.R. Kubelik & K.L. Livak. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18: 6531–6535.

    PubMed  Google Scholar 

  • Wolfe, J.A. 1987. Late Cretaceous-Cenozoic history of deciduousness and the terminal Cretaceous event. Paleobiology 13: 215–226.

    Google Scholar 

  • Yang, H. 1993. Miocene Lake Basin Analysis and Comparative Taphonomy: Clarkia (Idaho, U.S.A.) and Shanwang (Shandong, P.R. China). Ph.D. Dissertation, University of Idaho, Moscow.

    Google Scholar 

  • Yang, H. 1996. Comparison of Miocene fossil floras in lacustrine deposits: Implications for palaeoclimatic interpretations at the middle latitude of the Pacific rim. Palaeobotanist 45: 416–429.

    Google Scholar 

  • Yang, H. 1999. From fossils to molecules: The Metasequoia tale continues. Arnoldia 58/59: 60–71.

    Google Scholar 

  • Yang, H. & J. H. Jin. 2000. Phytogeographic history and evolutionary stasis of Metasequoia: Geological and genetic information contrasted. Acta Palaeontologica Sinica 39: 288–307.

    Google Scholar 

  • Yang, H. & Y. Huang. 2003. Preservation of lipid hydrogen isotope ratios in Miocene lacustrine sediments and plant fossils at Clarkia, northern Idaho, USA. Organic Geochemistry 34: 413–423.

    Google Scholar 

  • Yang, H., Y. Huang, Q. Leng, B.A. LePage & C. Williams. In press. Biomolecular preservation of Tertiary Metasequoia Fossil Lagerstätten revealed by comparative pyrolysis analysis. Review of Palaeobotany and Palynology.

    Google Scholar 

  • Yang, Q., W.R. Gower, C. Li, P. Chen & D.L. Vesely. 1999. Atrial natriuretic-like peptide and its prohormone within Metasequoia. Proceedings of Society of Experimental Biology and Medicine 221: 188–192.

    Google Scholar 

  • Zhang, W.Y. & M.H. Li. 1994a. An analysis of the population genetic structure of Metasequoia glyptostroboides by isozyme technique. Journal of South China Agricultural University 15: 129–135.

    Google Scholar 

  • Zhang, W.Y. & M.H. Li. 1994b A study on genetic variation of isozyme in Metasequoia glyptostroboides. Journal of South China Agricultural University 15: 118–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Yang, H. (2005). Biomolecules from Living and Fossil Metasequoia: Biological and Geological Applications. In: LePage, B.A., Williams, C.J., Yang, H. (eds) The Geobiology and Ecology of Metasequoia. Topics in Geobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2764-8_8

Download citation

Publish with us

Policies and ethics