Skip to main content

Geospace storm dynamics

  • Conference paper

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 176))

Abstract

Geospace storms, also known as space or magnetic storms, interconnect the Sun and interplanetary space with the terrestrial magnetosphere, ionosphere, and atmosphere — and often even the surface of the Earth — in a uniquely global and synergistic manner. Energy from the Sun drives a continuous interaction of these distinct but coupled regions. Geospace storms have traditionally been called geomagnetic storms, because of the defining feature of global geomagnetic field disturbances that they induce. However, observations over four decades of space-borne instrumentation have shown that storms involve more than just variations in the geomagnetic field: they involve acceleration of charged particles in the magnetosphere, modification of the electrodynamic properties of the ionosphere, heating of the upper atmosphere, and creation of geomagnetically induced currents on the ground. This chapter attempts a synoptic discourse of geospace magnetic storm history, the classical perception of magnetic storm dynamics, and deviations from long-time accepted paradigms. In particular, we review in some detail one of the critical issues of storm dynamics, namely the storm-substorm relationship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, W.G., Comparison of simultaneous magnetic disturbance at several observatories, Phil. Trans. London (A), 183, 131, 1892.

    Article  ADS  Google Scholar 

  • Akasofu, S.-I., Polar and Magnetospheric Substorms, D. Reidel, Boston, MA, 1968.

    Google Scholar 

  • Akasofu, S.-I., and S. Chapman, The ring current, geomagnetic disturbance, and the Van Allen radiation belts, J. Geophys. Res., 66, 1321–1350, 1961.

    Article  ADS  MATH  Google Scholar 

  • Akasofu, S.-I., S. Chapman, and C.-I. Meng, The polar electrojet, J. Atmos. Terr. Phys., 27, 1275–1305, 1965.

    Article  ADS  Google Scholar 

  • Baker, D. N., E. W. Hones Jr., D. T. Young, and J. Birn, The possible role of ionospheric oxygen in the initiation and development of plasma sheet instabilities, Geophys. Res. Lett., 9, 1337–1340, 1982.

    Article  ADS  Google Scholar 

  • Baker, D. N., T. A. Fritz, W. Lennartsson, B. Wilken, H. W. Kroehl, and J. Birn, The role of heavy ions in the localization of substorm disturbances on March 22, 1979: CDAW 6, J. Geophys. Res., 90, 1273–1281, 1985.

    Article  ADS  Google Scholar 

  • Baker, D. N., et al., Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere: ISTP coordinated measurements, J. Geophys. Res., 102, 14,141–14,148, 1997.

    ADS  Google Scholar 

  • Baker, D. N., Specifying and forecasting space weather threats to human technology, this volume, 2004.

    Google Scholar 

  • Birkeland, K., The Norwegian Aurora Borealis Expedition, H. Aschehoug and Co., Christiania, sect. 1, 1908.

    Google Scholar 

  • Broun, J.A., On the horizontal force of the Earth’s magnetism, Proc. Roy. Soc. Edinburgh, 22, 511, 1861.

    Google Scholar 

  • Carrington, R. C., Observation of the Spots on the Sun from November 9, 1853, to March 24, 1863, Made at Redhill, William and Norgate, London and Edinburgh, 167, 1863.

    Google Scholar 

  • Chapman, S., An outline of a theory of magnetic storms, Proc. R. Soc. London. A95, 61, 1919.

    ADS  Google Scholar 

  • Chapman, S., Earth storms: Retrospect and prospect, J. Phys. Soc. Japan, 17 (Suppl. A-I), 6–16, 1962.

    ADS  Google Scholar 

  • Chapman, S., and J. Bartels, Geomagnetism, pp. 321–327, Oxford University Press, London, 1940.

    Google Scholar 

  • Chapman, S., and V. C. A. Ferraro, A new theory of magnetic storms, Nature, 126, 129–130, 1930.

    Article  ADS  Google Scholar 

  • Chapman, S., and V. C. A. Ferraro, A new theory of magnetic storms, I. The initial phase, Terrest. Magn. Atmosph. Elec., 36, 77–97, 1931.

    Article  Google Scholar 

  • Chen, M. W., L. Lyons, and M. Schultz, Simulations of phase space distributions of storm time proton ring current, J. Geophys. Res., 99, 5745–5759, 1994.

    Article  ADS  Google Scholar 

  • Christofilos, N. C., The Argus Experiment, J. Geophys. Res., 64, 869–875, 1959.

    Article  ADS  Google Scholar 

  • Daglis, I. A., The role of magnetosphere-ionosphere coupling in magnetic storm dynamics, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, edited by B. T. Tsurutani, W. D. Gonzalez, Y. Kamide, and J. K. Arballo, pp. 107–116, American Geophysical Union, Washington, DC, 1997a.

    Google Scholar 

  • Daglis, I. A., Terrestrial agents in the realm of space storms: Missions study oxygen ions, Eos Trans. AGU, 78 (24), 245–251, 1997b.

    Article  ADS  Google Scholar 

  • Daglis, I. A., Space storms and space weather hazards, Proposal for an Advanced Study Institute to the NATO Scientific and Environmental Division, Athens, February 1999a.

    Google Scholar 

  • Daglis, I. A., Space Storms, Human Potential Research Training Network Proposal RTN1-1999-00285, Athens, May 1999b.

    Google Scholar 

  • Daglis, I. A., Space storms, ring current and space-atmosphere coupling, in Space Storms and Space Weather Hazards, edited by I. A. Daglis, pp. 1–42, Kluwer Academic Publishers, Dordrecht, 2001a.

    Google Scholar 

  • Daglis, I. A., The storm-time ring current, Space Science Reviews, 98, 343–363, 2001b.

    Article  ADS  Google Scholar 

  • Daglis, I. A., Magnetic Storm — still an adequate name?, Eos Trans. AGU, 84 (22), 207–208, 2003.

    Article  ADS  Google Scholar 

  • Daglis, I. A., and W. I. Axford, Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail, J. Geophys. Res., 101, 5047–5065, 1996.

    Article  ADS  Google Scholar 

  • Daglis, I. A., E. T. Sarris, and B. Wilken, AMPTE/CCE observations of the ion population at geosynchronous altitudes, Ann. Geophys., 11, 685–696, 1993.

    ADS  Google Scholar 

  • Daglis, I. A., S. Livi, E. T. Sarris, and B. Wilken, Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms, J. Geophys. Res., 99, 5691–5703, 1994.

    Article  ADS  Google Scholar 

  • Daglis, I. A., W. I. Axford, S. Livi, B. Wilken, M. Grande, and F. Søraas, Auroral ionospheric ion feeding of the inner plasma sheet during substorms, J. Geomagn. Geoelectr., 48, 729–739, 1996.

    Google Scholar 

  • Daglis, I. A., R. M. Thorne, W. Baumjohann, and S. Orsini, The terrestrial ring current: Origin, formation, and decay, Rev. Geophys, 37, 407–438, 1999a.

    Article  ADS  Google Scholar 

  • Daglis, I. A., G. Kasotakis, E. T. Sarris, Y. Kamide, S. Livi, and B. Wilken, Variations of the ion composition during a large magnetic storm and their consequences, Phys. Chem. Earth, 24, 229–232, 1999b.

    Google Scholar 

  • Daglis, I. A., J. U. Kozyra, Y. Kamide, D. Vassiliadis, A. S. Sharma, M. W. Liemohn, W. D. Gonzalez, B. T. Tsurutani, and G. Lu, Intense space storms: Critical issues and open disputes, J. Geophys. Res., 108(A5), 1208, doi:10.1029/2002JA009722, 2003.

    Article  Google Scholar 

  • Delcourt, D. C., Particle acceleration by inductive electric fields in the inner magnetosphere, J. Atmos. Sol. Terr. Phys., 64, 551–559, 2002.

    Article  ADS  Google Scholar 

  • Fok, M.-C., T. E. Moore, and M. E. Greenspan, Ring current development during storm main phase, J. Geophys. Res., 101, 15,311–15,322, 1996.

    Article  ADS  Google Scholar 

  • Fok, M.-C., T. E. Moore, and D. C. Delcourt, Modelling of inner plasma sheet and ring current during substorms, J. Geophys. Res., 104, 14,557–14,569, 1999.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., and B. T. Tsurutani, Criteria of interplanetary parameters causing intense magnetic storms (Dst <−100nT), Planet. Space Sci., 35, 1101–1109, 1987.

    Article  ADS  Google Scholar 

  • Gosling, J. T., The solar flare myth, J. Geophys. Res., 98, 18,937–18,949, 1993.

    ADS  Google Scholar 

  • Kamide, Y., Is substorm occurrence a necessary condition for a magnetic storm?, J. Geomagn. Geoelectr., 44, 109–117, 1992.

    Google Scholar 

  • Kamide, Y., N. Yokoyama, W. D. Gonzalez, B. T. Tsurutani, I. A. Daglis, A. Brekke, and S. Masuda, Two-step develoment of geomagnetic storms, J. Geophys. Res., 103, 6917–6921, 1998.

    Article  ADS  Google Scholar 

  • Kintner, P.M., R. Meier, and J. Spann, Living With a Star, the Geospace Mission Definition Team and Aeronomy, AGU Fall Meeting Abstracts, 2001AGUFMSA41C, 2001.

    Google Scholar 

  • Konradi, A., C. L. Semar, and T. A Fritz, Injection boundary dynamics during a geomagnetic storm, J. Geophys. Res., 81, 3851–3865, 1976.

    Article  ADS  Google Scholar 

  • Kozyra, J. U., V. K. Jordanova, J. E. Borovsky, M. F. Thomsen, D. J. Knipp, D. S. Evans, D. J. McComas, and T. E. Cayton, Effects of a high-density plasma sheet on ring current development during the November 2–6, 1993, magnetic storm, J. Geophys. Res., 103, 26,285–26,305, 1998.

    ADS  Google Scholar 

  • Kozyra, J. U., M. W. Liemohn, C. R. Clauer, A. J. Ridley, M. F. Thomsen, J. E. Borovsky, J. L. Roeder, V. K. Jordanova, and W. D. Gonzalez, Multistep Dst development and ring current composition changes during the 4–6 June 1991 magnetic storm, J. Geophys. Res., 107(A8), 1224, doi:10.1029/2001JA000023, 2002.

    Article  Google Scholar 

  • Krimigis, S. M., G. Gloeckler, R. W. McEntire, T. A. Potemra, F. L. Scarf, and E. G. Shelley, Magnetic storm of 4 September 1985: A synthesis of ring current spectra and energy densities measured with AMPTE-CCE, Geophys. Res. Lett., 12, 329–332, 1985.

    Article  ADS  Google Scholar 

  • Liemohn, M. W., and J. U. Kozyra, Lognormal form of the ring current energy content, J. Atmos. Sol. Terr. Phys., 65 (5), 871–886, 2003.

    Article  ADS  Google Scholar 

  • Liemohn, M. W., J. U. Kozyra, V. K. Jordanova, G. V. Khazanov, M. F. Thomsen, and T. E. Cayton, Analysis of early phase ring current recovery mechanisms during geomagnetic storms, Geophys. Res. Lett., 26, 2845–2849, 1999.

    Article  ADS  Google Scholar 

  • Mitchell, D. G., The space environment, in Fundamentals of space systems, edited by V. L. Pisacane and R. C. Moore, pp. 45–98, Oxford Univ. Press, Oxford, 1994.

    Google Scholar 

  • Moos, N. A. F., Colaba magnetic data 1846 to 1905. Part I: magnetic data and instruments. Part II: the phenomenon and its description, Bombay, India, 1910.

    Google Scholar 

  • Neugebauer, M., and C. Snyder, The mission of Mariner II: Preliminary observations: Solar plasma experiments, Science, 138, 1095–1096, 1962.

    Article  ADS  Google Scholar 

  • Ohtani, S., M. Nosé, G. Rostoker, H. Singer, A. T. Y. Lui, and M. Nakamura, Storm-substorm relationship: Contribution of the tail current to Dst, J. Geophys. Res., 106, 21199–21209, 2001.

    Article  ADS  Google Scholar 

  • Parker, E. N., Newtonian development of the dynamical properties of the ionised gases at low density, Phys. Rev., 107, 924–933, 1957.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Reeves, G. D., K. L. McAdams, R. H. W. Friedel, and T. P. O’Brien, Acceleration and loss of relativistic electrons during geomagnetic storms, Geophys. Res. Lett., 30, 1529–1532, 2003.

    Article  ADS  Google Scholar 

  • Rothwell, P. L., L. P. Block, M. B. Silevitch, and C.-G. Fälthammar, A new model for substorm onsets: The pre-breakup and triggering regimes, Geophys. Res. Lett., 15, 1279–1282, 1988.

    Article  ADS  Google Scholar 

  • Simpson, S., Massive solar storms inflict little damage on Earth, Space Weather, 1, 1012, doi:10.1029/2003SW000042, 2003.

    Article  ADS  Google Scholar 

  • Smith, P. H., and N. K. Bewtra, Charge exchange lifetimes for ring current ions, Space Sci. Rev., 22, 301–318, 1978.

    Article  ADS  Google Scholar 

  • Sugiura, M., Hourly values of the equatorial Dst for IGY, in Ann. Int. Geophys. Year, Vol. 35, pp. 945–948, Pergamon Press, Oxford, 1964.

    Google Scholar 

  • Tsurutani, B. T., The interplanetary causes of magnetic storms, substorms and geomagnetic quiet, in Space storms and space weather hazards, edited by I. A. Daglis, pp. 103–130, Kluwer Academic Publishers, Dordrecht, 2001.

    Google Scholar 

  • Van Allen, J. A., The geomagnetically trapped corpuscular radiation, J. Geophys. Res., 64, 1683–1689, 1959.

    Article  ADS  Google Scholar 

  • Vassiliadis, D., A.J. Klimas, S.F. Fung, D.N. Baker, R.S. Weigel, and S. Kanekal, Structure and dynamics of the outer radiation belt, this volume, 2004.

    Google Scholar 

  • von Humboldt, A., Die vollständigste aller bisherigen Beobachtungen über den Einfluss des Nordlichts auf die Magnetnadel, Annalen der Physik, 29, 425–429, 1808.

    Article  ADS  Google Scholar 

  • Walt, M., Introduction to Geomagnetically Trapped Radiation, Cambridge University Press, Cambridge, UK, 1994.

    Book  Google Scholar 

  • Wygant, J., D. Rowland, H. J. Singer, M. Temerin, F. Mozer, and M. K. Hudson, Experimental evidence on the role of the large spatial electric field in creating the ring current, J. Geophys. Res., 103, 29,527–29,544, 1998.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Daglis, I.A. (2004). Geospace storm dynamics. In: Daglis, I.A. (eds) Effects of Space Weather on Technology Infrastructure. NATO Science Series II: Mathematics, Physics and Chemistry, vol 176. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2754-0_2

Download citation

Publish with us

Policies and ethics