Skip to main content

Organic Chemistry Studies on Amazonian Dark Earths

  • Chapter
Amazonian Dark Earths

Summary and Conclusions

The organic chemistry of soil organic matter (SOM) in ADEs can be looked at at different scales, depending on the type of interest. At an ecological level, operationally defined SOM fractions with different turnover times and / or stability can be separated and characterized. SOM associated with different particle-size fractions vary in composition and turnover time, the sand fraction containing labile, particulate SOM, the silt fraction stable SOM, and the clay fraction microbially active SOM. Density fractionation separates particulate SOM in the light fraction from organo-mineral associated SOM in the medium fraction, and more or less pure minerals in the heavy fraction. To study the origin of SOM as well as its turnover mechanisms, analyzing the chemical composition of SOM might be more useful. For this aim, more or less specific biomarkers such as individual carbohydrates, lipids (especially n-alkanes), amino sugars, and benzenecarboxylic acids have been proven useful. Obviously the most powerful tool is a combination of SOM fractionation and biomarker analysis together with rather new techniques such as compound-specific stable isotope analyses where the origin of identical molecules can be traced. Future work may benefit from the application of microscopic and non-destructive microspectroscopic techniques to investigate SOM within its mineral and microbiological soil environment. For in-depth information on modern methodological approaches and concepts on SOM structure, the excellent reviews of Baldock and Nelson (2000), Hedges et al. (2000), and Koegel-Knabner (2000) are recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Almendros, G., & González-Vila, F.J. (1987). Degradative studies on a soil humic fraction. Sequential degradation of inherited humin. Soil Biology and Biochemistry, 19, 513–520.

    Article  CAS  Google Scholar 

  • Amelung, W. (2001). Methods using amino sugars as markers for microbial residues in soil. In R. Lal, J.M. Kimble, R.F. Follett, B., & B.A. Stewart (Eds.), Assessment Methods for Soil Carbon (pp. 233–272). Boca Raton: Lewis Publishers.

    Google Scholar 

  • Amelung, W., & Zech, W. (1999). Minimisation of organic matter disruption during particle-size fractionation of grassland epipedons. Geoderma, 92, 73–85.

    Article  Google Scholar 

  • Amelung, W., Cheshire, M.V., & Guggenberger, G. (1996). Determination of neutral and acidic sugars in soil by capillary gas-liquid chromatography after trifluoroacetic acid hydrolysis. Soil Biology and Biochemistry, 28, 1631–1639.

    Article  CAS  Google Scholar 

  • Amelung, W., Flach, K.W., & Zech, W. (1999). Lignin in particle-size fractions of native grassland soils as influenced by climate. Soil Science Society of America Journal, 63, 1222–1228.

    CAS  Google Scholar 

  • Baldock, J.A., & Nelson, P.N. (2000). Soil organic matter. In M.E. Sumner (Ed.), Handbook of Soil Science (pp. 1-B–25-B-84). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Bourbonniere, R.A., Telford, S.L., Ziolkowski, L.A., Lee, J., Evans, M.S., & Meyers, P.A. (1997). Biogeochemical marker profiles in cores of dated sediments from Large North American lakes. In R.P. Eganhouse (Ed.), Molecular Markers in Environmental Geochemistry. ACS Symposium Series 671 (pp. 133–150). Washington, D.C.: American Chemical Society.

    Google Scholar 

  • Christensen, B.T. (1992). Physical fractionation of soil and organic matter in primary particle-size and density separates. Advances in Soil Science, 20, 1–90.

    Google Scholar 

  • Christensen, B.T. (1996). Carbon in primary and secondary organomineral complexes. In M.R. Carter, & B.A. Stewart (Eds.), Advances in Soil Science — Structure and Organic Matter Storage in Agricultural Soils (pp. 97–165). Boca-Raton, FL: CRC Lewis Publishers.

    Google Scholar 

  • Collister, J.W., Rieley, G., Stern, B., Eglinton, G., & Fry, B. (1994). Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolism. Organic Geochemistry, 21, 619–627.

    CAS  Google Scholar 

  • del Rio, J.C., McKinney, D.E., Knicker, H., Nanny, M.A., Minard, R.D., & Hatcher, P.G. (1998). Structural characterization of bio-and geo-macromolecules by off-line thermochemolysis with tetramethylammonium hydroxide. Journal of Chromatography, 823, 433–448.

    Google Scholar 

  • Dinel, H., Schnitzer, M., Pare, T., Schulten, H.-R., Ozdoba, D., & Marche, T. (2001). Interpretation by principal component analysis of pyrolysis-field ionization mass spectra of lignite ores. Canadian Special Publication — Royal Society of Chemistry, 273, 329–336.

    CAS  Google Scholar 

  • Filley, T.R., Freeman, K.H., Bianchi, T.S., Baskaran, M., Colarusso, L.A., & Hatcher, P.G. (2001). An isotopic biogeochemical assessment of shifts in organic matter input to Holocene sediments from Mud Lake, Florida. Organic Geochemistry, 32, 1153–1167.

    Article  CAS  Google Scholar 

  • Glaser, B. (1999). Eigenschaften und Stabilität des Humuskörpers der Indianerschwarzerden Amazoniens. Bayreuther Bodenkundliche Berichte 68.

    Google Scholar 

  • Glaser, B., & Amelung, W. (2003). Pyrogenic carbon in native grassland soils along a climoseqence in North America. Global Biogeochemical Cycles, in press.

    Google Scholar 

  • Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (1998). Black carbon in soils: the use of benzenecarboxylic acids as specific markers. Organic Geochemistry, 29, 811–819.

    Article  CAS  Google Scholar 

  • Glaser, B., Balashov, E., Haumaier, L., Guggenberger, G., & Zech, W. (2000). Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Organic Geochemistry, 31, 669–678.

    Article  CAS  Google Scholar 

  • Glaser, B., Guggenberger, G., Haumaier, L., & Zech, W. (2001a). Persistence of soil organic matter in archaeological soils (Terra Preta) of the Brazilian Amazon region. In R.M. Rees, B.C. Ball, C.D. Campbell, & C.A. Watson (Eds.), Sustainable Management of Soil Organic Matter (pp. 190–194). Wallingford, UK: CAB International.

    Google Scholar 

  • Glaser, B., Guggenberger, G., & Zech, W. (2001b). Black carbon in sustainable soils of the Brazilian Amazon region. In R. S. Swift, & K. M. Spark (Eds.) Understanding & Managing Organic Matter in Soils, Sediments & Waters (pp. 359–364). St. Paul, MN: International Humic Substances Society.

    Google Scholar 

  • Glaser, B., Haumaier, L., Guggenberger, G., & Zech, W. (2001c). The Terra Preta phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften, 88, 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Glaser, B., Lehmann, J., Steiner, C., Nehls, T., Yousaf, M., & Zech, W. (2002). Potential of pyrolyzed organic matter in soil amelioration. Beijing, China: Ministry of Water Resources 12th International Soil Conservation Organization Conference.

    Google Scholar 

  • Glaser, B., Guggenberger, G., Zech, W., & Ruivo, M. (2003a). Soil organic matter stability in Amazonian Dark Earths. In J. Lehmann, D.C. Kern, B. Glaser, & W.I. Woods (Eds.), Amazonian Dark Earths: Origin, Properties, Management (pp. 141–158). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Glaser, B., Turrión, M.B., & Alef, K. (2003b). Amino sugars and muramic acid — Biomarkers for soil microbial community structure analysis. Soil Biology & Biochemistry, in press.

    Google Scholar 

  • Golchin, A., Oades, J.M., Skjemstad, J.O., & Clarke, P. (1994a). Soil structure and carbon cycling. Australian Journal of Soil Research, 32, 1043–1068.

    Google Scholar 

  • Golchin, A., Oades, J.M., Skjemstad, J.O., & Clarke, P. (1994b). Study of free and occluded particulate organic matter in soils by solid state 13C CP/MAS NMR spectroscopy and scanning electron microscopy. Soil Biology and Biochemistry, 32, 285–309.

    CAS  Google Scholar 

  • Goñi, M.A., Ruttenberg, K.C., & Eglinton, T.I. (1998). A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico. Geochimica et Cosmochimica Acta, 62, 3055–3075.

    Article  Google Scholar 

  • Guggenberger, G. (2002). Organic matter structure and characterization. In R. Lal (Eds) Encyclopedia of Soil Science (pp. 929–935). New York: Marcel Dekker Inc.

    Google Scholar 

  • Guggenberger, G., Christensen, B. T., & Zech, W. (1994). Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature. European Journal of Soil Science, 45, 449–458.

    CAS  Google Scholar 

  • Guggenberger, G., Zech, W., & Thomas, R.J. (1995). Lignin and carbohydrate alteration in particle-size separates of an Oxisol under tropical pastures following native savanna. Soil Biology and Biochemistry, 27, 1629–1638.

    Article  CAS  Google Scholar 

  • Haider, K. (1992). Problems related to the humification processes in soils of temperate climates. In G. Stotzky, & J. M. Bollag (Eds.), Soil Biochemistry (pp. 55–94). New York: Marcel Dekker Inc.

    Google Scholar 

  • Hatcher, P.G., Schnitzer, M., Dennis, L.W., & Maciel, G.E. (1981). Aromaticity of humic substances in soils. Soil Science Society of America Journal, 45, 1089–1094.

    CAS  Google Scholar 

  • Haumaier, L., & Zech, W. (1995). Black carbon — possible source of highly aromatic components of soil humic acids. Organic Geochemistry, 23, 191–196.

    Article  CAS  Google Scholar 

  • Heckenberger, M.J. (1996). War and Peace in the Shadow of Empire: Sociopolitical Change in the Upper Xingu of Southeastern Amazonia, A. D. 1400–2000. Unpublished Ph.D. thesis. University of Pittsburgh.

    Google Scholar 

  • Hedges, J.I., Eglinton, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Koegel-Knabner, I., de Leeuw, J.W., Littke, R., Michaelis, W., & Rullkotter, J. (2000). The molecularly-uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry, 31, 945–958.

    Article  CAS  Google Scholar 

  • Hoefs, M.J.L., Rijpstra, W.I.C., & Damste, J.S.S. (2002). The influence of oxic degradation on the sedimentary biomarker record I: evidence from Madeira Abyssal Plain turbidities. Geochimica et Cosmochimica Acta, 66, 2719–2735.

    Article  CAS  Google Scholar 

  • Hu, S., Coleman, D.C., Hendrix, D.F., & Beare, M.H. (1995). Biotic manipulation effects on soil carbohydrates and microbial biomass in a cultivated soil. Soil Biology and Biochemistry, 27, 1127–1135.

    Article  CAS  Google Scholar 

  • Koegel, I. (1986). Estimation and decomposition pattern of the lignin component in forest humus layers. Soil Biology and Biochemistry, 18, 589–594.

    CAS  Google Scholar 

  • Koegel-Knabner, I. (1993). Biodegradation and humification processes in forest soils. In J. M. Bollag, & G. Stotzky (Eds.), Soil Biogeochemistry (pp. 101–137). New York: Marcel Dekker.

    Google Scholar 

  • Koegel-Knabner, I. (2000). Analytical approaches for characterizing soil organic matter. Organic Geochemistry, 31, 609–625.

    Google Scholar 

  • Koegel-Knabner, I., Zech, W., & Hatcher, P. G. (1988). Distribution and decompoosition pattern of cutin and suberin in forest soils. Journal for Plant Nutrition and Soil Science, 152, 409–413.

    Google Scholar 

  • Ladd, J.N., Foster, R.C., & Skjemstad, J.O. (1993). Soil structure: carbon and nitrogen metabolism. Geoderma, 56, 401–434.

    Article  CAS  Google Scholar 

  • Lichfouse, E., Chenu, C., Baudin, F., Leblond, C., da Silva, M., Behar, F., Derenne, S., Largeau, C., Wehrung, P., & Albrecht, P. (1998). A novel pathway of soil organic matter formation by selective preservation of resistant straight-chain biopolymers: chemical and isotopic evidence. Organic Geochemistry, 28, 411–415.

    Google Scholar 

  • Lima, H.N., Schaefer, C.E.R., Mello, J.W.V., Gilkes, R.J., & Ker, J.C. (2002). Pedogenesis and pre-Columbian land use of “Terra Preta Anthrosols” (“Indian black earth”) of Western Amazonia. Geoderma, 110, 1–17.

    Article  CAS  Google Scholar 

  • Mann, C.C. (2002). The real dirt on Rainforest fertility. Science, 297, 922–923.

    Google Scholar 

  • Neufeldt, H. (1998). Land-use effects on soil chemical and physical properties of cerrado oxisols. Bayreuther Bodenkundliche Berichte, 59.

    Google Scholar 

  • Oades, J.M. (1989). An introduction to organic matter in mineral soils. In J.B. Dixon, & S.B. Weed (Eds.), Minerals in Soil Environments (pp. 89–159). Madison, WI, USA: Soil Science Society of America Publishers Inc.

    Google Scholar 

  • Riederer, M., Matzke, K., Ziegler, F., & Koegel-Knaber, I. (1993). Inventories and decomposition of the lipid plant biopolymers cutin and suberin in temperate forest soils. Organic Geochemistry, 20, 1063–1076.

    Article  CAS  Google Scholar 

  • Saiz-Jimenez, C. (1994a). Analytical pyrolysis of humic substances: pitfalls, limitations and possible solutions. Environmental Science and Technology, 24, 1773–1780.

    Google Scholar 

  • Saiz-Jimenez, C. (1994b). Pyrolysis/methylation of soil fulvic acids: Benzenecarboxylic acids revisited. Environmental Science and Technology, 28, 97–100.

    Google Scholar 

  • Schnitzer, M. (1978). Humic substances: Chemistry and reactions. In M. Schnitzer, & S.U. Khan (Eds.), Soil Organic Matter (pp. 1–64). Amsterdam: Elsevier.

    Google Scholar 

  • Schulten, H.-R., & Leinweber, P. (1996). Characterization of humic and soil particles by analytical pyrolysis and computer modeling. Journal of Analysis and Applications of Pyrolysis, 38, 1–53.

    CAS  Google Scholar 

  • Shafizadeh, F., & Sekiguchi, Y. (1983). Development of aromaticity in cellulosic chars. Carbon 21, 511–516.

    Article  CAS  Google Scholar 

  • Skjemstad, J.O., & Dalal, R.C. (1987). Spectroscopic and chemical differences in organic matter of two Vertisols subjected to long periods of cultivation. Australian Journal of Soil Research, 25, 323–335.

    Article  CAS  Google Scholar 

  • Skjemstad, J.O., Clarke, P., Taylor, J.A., Oades, J.M., & McClure, S.G. (1996). The chemistry and nature of protected carbon in soil. Australian Journal of Soil Research, 34, 251–271.

    Article  CAS  Google Scholar 

  • Sombroek, W.G. (1966). Amazon Soils. A reconnaissance of the Soils of the Brazilian Amazon Region. Wageningen, the Netherlands: Agricultural Publications and Documentation.

    Google Scholar 

  • Sombroek, W.G., Nachtergaele, F.O., & Hebel, A. (1993). Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. Ambio, 22, 417–426.

    Google Scholar 

  • Srivastava, S.C., & Singh, J.S. (1991). Microbial carbon, nitrogen, and phosphorus in dry tropical forest soils: effects of alternate land-uses and nutrient flux. Soil Biology and Biochemistry, 23, 117–124.

    Article  CAS  Google Scholar 

  • Stevenson, F.J. (1994). Humus Chemistry. New York: Wiley.

    Google Scholar 

  • Stoffyn-Egli, P., Potter, T.M., Leonard, J.D., & Pocklington, R. (1997). The identification of black carbon particles with the analytical scanning electron microscope: methods and initial results. The Science of the Total Environment, 198, 211–223.

    CAS  Google Scholar 

  • Tegelaar, E.W., de Leeuw, J.W., & Saiz-Jimenez, C. (1989). Possible origin of aliphatic moieties in humic substances. The Science of the Total Environment, 81/82, 1–17.

    Article  Google Scholar 

  • van Bergen, P., Flannery, M.B., Poulton, P.R., & Evershed, R.P. (1998). Organic geochemical studies of soils from Rothamsted experimental station: III. Nitrogen-containing organic matter in soil from Geescroft Wilderness. In B.A. Stankiewicz, & P.F. van Bergen (Eds.), Fate of N-Containing Macromolecules in the Biosphere and Geosphere (p. 321–338). London, UK: Oxford University Press.

    Google Scholar 

  • Woods, W.I., & Mann, C.C. (2000). The good earth: Did people improve the Amazon basin? Science, 287, 788.

    Google Scholar 

  • Zech, W., & Koegel-Knabner, I. (1994). Patterns and regulation of organic matter transformation in soils: litter decomposition and humification. In E. D. Schulze (Ed.), Flux Control in Biological Systems (pp. 303–334). New York: Academic Press.

    Google Scholar 

  • Zech, W., Haumaier, L., & Hempfling, R. (1990). Ecological aspects of soil organic matter in tropical land use. In P. McCarthy, C. E. Clapp, R. L. Malcolm, & P. R. Bloom (Eds.), Humic Substances in Soil and Crop Sciences. Selected Readings (pp. 187–202). Madison Wisconsin, USA: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  • Zech, W., Glaser, B., Ni, A., Petrov, M., & Lemzin, I. (2000). Soils as indicators of the Pleistocene and Holocene landsccape evolution in the Alay Range (Kyrgystan). Quaternary International, 65/66, 161–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Glaser, B., Guggenberger, G., Zech, W. (2003). Organic Chemistry Studies on Amazonian Dark Earths. In: Lehmann, J., Kern, D.C., Glaser, B., Wodos, W.I. (eds) Amazonian Dark Earths. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2597-1_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2597-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1839-8

  • Online ISBN: 978-1-4020-2597-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics