Skip to main content

Paxillin-Associated Arf GAPs

Their Isoform Specificities and Roles in Coordination

  • Chapter
Book cover ARF Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 1))

Abstract

Cell migration is a multifactorial process in which a number of distinct events occur simultaneously. Paxillin is an integrin-assembly adaptor protein. Here, properties of Arf GAPs bearing paxillin-binding capacity are described with their isoform specificity. Roles in linking Arf function with other intracellular events all need to be coordinately regulated during integrin-mediated cell adhesion and migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aderem, A., and Underhill, D. M. (1999). Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol., 17, 593–623.

    Article  CAS  PubMed  Google Scholar 

  • Aggeler, J., and Werb, Z. (1982). Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J. Cell Biol., 94, 613–623.

    Article  CAS  PubMed  Google Scholar 

  • Al-Awar, O., Radhakrishna, H., Powell, N. N., and Donaldson, J. G. (2000). Separation of membrane trafficking and actin remodeling functions of ARF6 with an effector domain mutant. Mol. Cell. Biol., 20, 5998–6007.

    Google Scholar 

  • Allen, L. H., and Aderem, A. (1996). Molecular definition of distinct cytoskeletal structures involved in complement-and Fc receptor-mediated phagocytosis in macrophages. J. Exp. Med., 184, 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Andreev, J., Simon, J., Sabatini, D. D., Kam, J., Plowman, G., Randazzo, P.A., and Schlessinger, J. (1999). Identification of a new Pyk2 target protein with Arf-GAP activity. Mol. Cell. Biol., 19, 2338–2350.

    CAS  PubMed  Google Scholar 

  • Bajno, L., Peng, X. R., Schreiber, A. D., Moore, H. P., Trimble, W. S., and Grinstein, S. (2000). Focal exocytosis of VAMP3-containing vesicles at sites of phagosome formation. J. Cell Biol., 149, 697–706.

    Article  CAS  PubMed  Google Scholar 

  • Bagrodia, S., Taylor, S. J., Jordon, K. A., Van Aelst, L., and Cerione, R. A. (1998). A novel regulator of p21-activated kinases. J. Biol. Chem., 273, 23633–23636.

    Article  CAS  PubMed  Google Scholar 

  • Bagrodia, S., Bailey, D., Lenard, Z., Hart, M., Guan, J. L., Premont, R. T., Taylor, S. J., and Cerione, R. A. (1999). A tyrosine-phosphorylated protein that binds to an important regulatory region on the cool family of p21-activated kinase-binding proteins. J. Biol. Chem., 274, 22393–22400.

    Article  CAS  PubMed  Google Scholar 

  • Bagrodia, S., and Cerione, R. A. (1999). Pak to the future. Trends Cell Biol., 9, 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Bockoch, G. M., Wang, Y., Bohl, B. P., Sells, M. A., Quilliam, L. A., and Knaus, U. G. (1996). Interaction of the Nck adapter protein with p21-activated kinase (PAK1). J. Biol. Chem., 271, 25746–25749.

    Google Scholar 

  • Borisy, G. G., and Svitkina, T. M. (2000). Actin machinery: pushing the envelope. Curr. Opin. Cell Biol., 12, 104–112.

    Article  CAS  PubMed  Google Scholar 

  • Boshans, R. L., Szanto, S., van Aelst, L., and D’Souza-Schorey, C. (2000). ADP-ribosylation factor 6 regulates actin cytoskeleton remodeling in coordination with Rac1 and RhoA. Mol. Cell Biol., 20, 3685–3694

    Article  CAS  PubMed  Google Scholar 

  • Bretscher, M. S. (1996). Getting membrane flow and the cytoskeleton to cooperate in moving cells. Cell, 87, 601–606.

    Article  CAS  PubMed  Google Scholar 

  • Bretscher, M. S. (1989). Endocytosis and recycling of the fibronectin receptor in CHO cells. EMBO J., 8, 1341–1348.

    CAS  PubMed  Google Scholar 

  • Bretscher, M. S. (1992). Circulating integrins: α5β1, α6β4 and Mac-1, but not α3β1, α4β1 or LFA-1. EMBO J., 11, 405–410.

    CAS  PubMed  Google Scholar 

  • Brown, M. T., Andrade, J., Radhakrishna, H., Donaldson, J. G., Cooper, J. A., and Randazzo, P. A. (1998). ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell Biol., 18, 7038–7051.

    CAS  PubMed  Google Scholar 

  • Brown, F. D., Rozelle, A. L., Yin, H. L., Bella, T., and Donaldson, J. G. (2001). Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol., 154, 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  • Brown, M. C., West, K. A., and Turner, C. E. (2002). Paxillin-dependent Paxillin Kinase Linker and p21-Activated Kinase Localization to Focal Adhesions Involves a Multistep Activation Pathway. Mol. Biol. Cell, 13, 1550–1565.

    Article  CAS  PubMed  Google Scholar 

  • Cavenagh, M. M., Whitney, J. A., Carrol, K., Zhang, C.-J., Boman, A. L., Rosenwald, A.G., Mellman, I., and Kahn, R. A. (1996). Intracellular distribution of Arf proteins in mammalian cells. Arf6 is uniquely localized to the plasma membrane. J. Biol. Chem., 271, 21767–21774.

    CAS  PubMed  Google Scholar 

  • Chardin, P., and McCormick, F. (1999). Brefeldin A: the advantage of being uncompetitive. Cell, 97, 153–155.

    Article  CAS  PubMed  Google Scholar 

  • Corbett, K. D., and Alber, T. (2001). The many faces of Ras: recognition of small GTP-binding proteins. Trends Biochem. Sci., 26, 710–716.

    Article  CAS  PubMed  Google Scholar 

  • Cox, D., Tseng, C. C., Bjekic, G., and Greenberg, S. (1999). A requirement for phosphatidylinositol 3-kinase in pseudopod extension. J. Biol. Chem., 274, 1240–1247.

    CAS  PubMed  Google Scholar 

  • Cukierman, E., Huber, I., Rotman, M., and Cassel. D. (1995). The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science, 270, 1999–2002.

    CAS  PubMed  Google Scholar 

  • Daniels, R. H., Zenke, F. T. and Bokoch, G. M. (1999). αPix stimulates p21-activated kinase activity through exchange factor-dependent and-independent mechanisms. J. Biol. Chem., 274, 6047–6050.

    CAS  PubMed  Google Scholar 

  • de Curtis, I. (2001) Cell migration: GAPs between membrane traffic and the cytoskeleton. EMBO R., 2, 277–281.

    Google Scholar 

  • Del Pozo, M. A., Kiosses, W. B., Alderson, N. B., Meller, N., Hahn, K. M., and Schwartz, M. A. (2002). Integrins regulate GTP-Rac localized effector interactions through dissociation of Rho-GDI. Nature Cell Biol., 4, 232–239.

    PubMed  Google Scholar 

  • Di Cesare, A., Paris, S., Albertinazzi, C., Dariozzi, S., Andersen, J., Mann, M., Longhi, R., and de Curtis, I. (2000). p95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nat. Cell Biol., 2, 521–530.

    PubMed  Google Scholar 

  • D’Souza-Schorey, C., Li, G., Colombo, M. I, and Stahl, P. D. (1995). A reglatory role for ARF6 in receptor-mediated endocytosis. Science, 267, 1175–1178.

    Google Scholar 

  • D’Souza-Schorey, C., van Donselaar, E., Hsu, V. W., Yang, C., Stahl, P. D., and Peters, P. J. (1998). ARF6 targets recycling vesicles to the plasma membrane: insights from an ultrastructural investigation. J. Cell Biol., 140, 603–616.

    Google Scholar 

  • Erickson, J. W., Zhang, C., Kahn, R. A., Evans, T., and Cerione, R. A. (1996). Mammalian Cdc42 is a brefeldin A-sensitive component of the Golgi apparatus. J. Biol. Chem., 271, 26850–26854.

    CAS  PubMed  Google Scholar 

  • Eugster, A., Frigerio, G., Dale, M., and Duden, R. (2000). COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J., 19, 3905–3917.

    Article  CAS  PubMed  Google Scholar 

  • Furman, C., Short, S. M., Subramanian, R. R., Zetter, B. R., and Roberts, T. M. (2002). DEF-1/ASAP1 is a GTPase-activating protein (GAP) for ARF1 that enhances cell motility through a GAP-dependent mechanism. J. Biol. Chem., 277, 7962–7969.

    CAS  PubMed  Google Scholar 

  • Galisteo, M. L., Chernoff, J., Su, Y.C., Skolnik, E. Y., and Schlessinger, J. (1996). The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J. Biol. Chem., 271, 20997–21000.

    CAS  PubMed  Google Scholar 

  • Goldberg, J. (1999). Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell, 96, 893–902.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, S., Chang, P., and Silverstein, S. C. (1994). Tyrosine phosphorylation of the γ subunit of Fcγ receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J. Biol. Chem., 269, 3897–3902.

    CAS  PubMed  Google Scholar 

  • Greenberg, S. (1999). Molecular components of phagocytosis. J. Leukoc. Biol., 66, 712–717.

    CAS  PubMed  Google Scholar 

  • Hart, M. J., Eva, A., Zangrilli, D., Aaronson, S. A., Evans, T., Cerione, R. A., and Zheng, Y. (1994). Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem., 269, 62–65.

    CAS  PubMed  Google Scholar 

  • Hashimoto, S., Tsubouchi, A., Mazaki, Y., and Sabe, H. (2001). Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin a with the kinase-inactive and the Cdc42-activated forms of PAK3. J. Biol. Chem., 278, 6037–6045.

    Google Scholar 

  • Hussain, N. K., Jenna, S., Glogauer, M., Quinn, C. C., Wasiak, S., Guipponi, M., Antonarakis, S. E., Kay, B. K., Stossel, T. P., Lamarche-Vane, N., and McPherson, P. S. (2001). Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat. Cell Biol., 3, 927–932.

    Article  CAS  PubMed  Google Scholar 

  • Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell, 110, 673–687.

    Article  CAS  PubMed  Google Scholar 

  • Kahn, R. A., and Gilman, A. G. (1986). The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J. Biol. Chem., 261, 7906–7911.

    CAS  PubMed  Google Scholar 

  • King, F. J., Hu, E., Harris, D.F., Sarraf, P., Spiegelman, B. M., and Roberts, T. M. (1999). DEF-1, a novel Src SH3 binding protein that promotes adipogenesis in fibroblastic cell lines. Mol. Cell. Biol., 19, 2330–2337.

    CAS  PubMed  Google Scholar 

  • Kondo, A., Hashimoto, S., Yano, H., Nagayama, K., Mazaki, Y., and Sabe, H. (2000). A new paxillin-binding protein, PAG3/Papalpha/KIAA0400, bearing an ADP-ribosylation factor GTPase-activating protein activity, is involved in paxillin recruitment to focal adhesions and cell migration. Mol. Biol. Cell, 11, 1315–1327.

    CAS  PubMed  Google Scholar 

  • Kraynov, V. S., Chamberlain, C., Bokoch, G. M., Schwartz, M. A., Slabaugh, S., and Hahn, K. M. (2000). Localized Rac activation dynamics visualized in living cells. Science, 290, 333–337.

    Article  CAS  PubMed  Google Scholar 

  • Kroschewski, R., Hall, A., and Mellman, I. (1999). Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol., 1, 8–13.

    CAS  PubMed  Google Scholar 

  • Lawson, M. A., and Maxfield, F. R. (1995). Ca(2+)-and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature, 377, 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Laukaitis, C. M., Webb, D. J., Donais, K., and Horwitz, A. F. (2001). Differential dynamics of a5 integrin, paxillin, and a-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol., 153, 1427–1440.

    Article  CAS  PubMed  Google Scholar 

  • Lu, W., Katz, S., Gupta, R., and Mayer, B. J. (1997). Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol., 7, 85–94.

    CAS  PubMed  Google Scholar 

  • Manabe, R., Kovalenko, M., Webb, D. J., and Horwitz, A. R. (2002). GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J. Cell Sci., 115, 1497–1510.

    CAS  PubMed  Google Scholar 

  • Mandiyan, V., Andreev, J., Schlessinger, J., and Hubbard, S. R. (1999). Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein beta. EMBO J., 18, 6890–6898.

    Article  CAS  PubMed  Google Scholar 

  • Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., and Lim, L. (1994). A brain serine/ threonine ptotein kinase activated by Cdc42 and Rac1. Nature, 367, 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Manser, E., Loo, T. H., Koh, C. G., Zhao, Z. S., Chen, X. Q., Tan, L., Tan, I., Leung, T., and Lim, L. (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell, 1, 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Mazaki, Y., Hashimoto, S., and Sabe, H. (1997). Monocyte cells and cancer cells express novel paxillin isoforms with different binding properties to focal adhesion proteins. J. Biol. Chem., 272, 7437–7444.

    CAS  PubMed  Google Scholar 

  • Mazaki, Y., Uchida, H., Hino, O., Hashimoto, S., and Sabe, H. (1998). Paxillin isoforms in mouse. Lack of the γ isoform and developmentally specific beta isoform expression. J. Biol. Chem., 273, 22435–22441.

    Article  CAS  PubMed  Google Scholar 

  • Mazaki, Y., Hashimoto, S., Okawa, K., Nakamura, K., Yagi, R., Yano, H., Kondo, A., Iwamatsu, A., Mizoguchi, A., and Sabe, H. (2001). An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization. Mol. Biol. Cell. 12, 645–662.

    CAS  PubMed  Google Scholar 

  • Mitchison, T. J., and Cramer, L. P. (1996). Actin-Based Cell Motility and Cell Locomotion. Cell, 84, 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto, S., Akiyama, S. K., and Yamada, K. M. (1995a). Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science, 267, 883–885.

    CAS  PubMed  Google Scholar 

  • Miyamoto, S., Teramoto, H., Coso, O. A., Gutkind, J. S., Burbelo, P. D., Akiyama, S. K., and Yamada, K. M. (1995b). Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J. Cell Biol., 131, 791–805.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura, K., Yano, H., Uchida, H., Hashimoto, S., and Sabe, H. (2000). Tyrosine phosphorylation of paxillin a is involved in temporospatial regulation of paxillin-containing focal adhesion formation and F-actin organization in motile cells. J. Biol. Chem., 275, 27155–27164.

    CAS  PubMed  Google Scholar 

  • Nakashima, S., Morinaka, K., Koyama, S., Ikeda, M., Kishida, M., Okawa, K., Iwamatsu, A., Kishida, S., and Kikuchi, A. (1999). Small G protein Ral and its downstream molecules regulate endocytosis of EGF and insulin receptors. EMBO J., 18, 3629–4362.

    Article  CAS  PubMed  Google Scholar 

  • Norman, J. C., Jones, D., Barry, S. T., Holt, M. R., Cockcroft, S., and Critchley, D.R. (1998). ARF1 mediates paxillin recruitment to focal adhesions and potentiates Rho-stimulated stress fiber formation in intact and permeabilized Swiss 3T3 fibroblasts. J. Cell Biol., 143, 1981–1995.

    Article  CAS  PubMed  Google Scholar 

  • Ooi, C. E., DelľAngelica, E. C., and Bonifacino, J. S. (1998). ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J. Cell Biol., 142, 391–402.

    Article  CAS  PubMed  Google Scholar 

  • Oshiro, T., Koyama, S., Sugiyama, S., Kondo, A., Onodera, Y., Asahara, T., Sabe, H., and Kikuchi A. (2002). Interaction of POB1, a downstream molecule of small G protein Ral, with PAG2, a paxillin binding protein, is involved in cell migration. J. Biol. Chem., 277, 38618–38626.

    Article  CAS  PubMed  Google Scholar 

  • Peters, P. J., Hsu, V. W., Ooi, C. E., Finazzi, D., Teal, S. B., Oorschot, V., Donaldson, J. G., and Klausner, R. D. (1995). Overexpression of wild-type and mutant ARF1 and ARF6: distinct perturbations of nonoverlapping membrane compartments. J. Cell Biol., 128, 1003–1017.

    Article  CAS  PubMed  Google Scholar 

  • Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., Moss, J., Vaughan, M., and Lefkowitz, R. J. (1998). β2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci., USA, 95, 14082–14087.

    Article  CAS  PubMed  Google Scholar 

  • Premont, R. T., Claing, A., Vitale, N., Perry, S. J., and Lefkowitz, R. J. (2000). The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J. Biol. Chem., 275, 22373–22380.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishna, H., Klausner, R. D., and Donaldson, J. G. (1996). Aluminum fluoride stimulates surface protrusions in cells overexpressing the ARF6 GTPase. J. Cell Biol., 134, 935–947.

    Article  CAS  PubMed  Google Scholar 

  • Radhakrishna, H., and Donaldson, J. G. (1997). ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol., 139, 49–61.

    Article  CAS  PubMed  Google Scholar 

  • Regen, C. M., and Horwitz A. F. (1992). Dynamics of β1 integrin-mediated adhesive contacts in motile fibroblasts. J Cell Biol., 119, 1347–1359.

    Article  CAS  PubMed  Google Scholar 

  • Ridley, A. J., Self, A. J., Kasmi, F., Paterson, H. F., Hall, A., Marshall, C. J., and Ellis, C. (1993). rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo. EMBO J., 12, 5151–5160.

    CAS  PubMed  Google Scholar 

  • Ridley, A. J. (2001). Rho proteins: linking signaling with membrane trafficking. Traffic, 2, 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, M., Barry, S., Woods, A., van der Sluijs, P., and Norman, J. (2001). PDGF-regulated rab4-dependent recycling of avβ3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr. Biol., 11, 1392–1402.

    Article  CAS  PubMed  Google Scholar 

  • Roth, M. G. (1999). Snapshots of ARF1: Implications for Mechanisms of Activation and Inactivation. Cell, 97, 149–152.

    Article  CAS  PubMed  Google Scholar 

  • Schekman, R., and Orci, L. (1996). Coat proteins and vesicle budding. Science, 271, 1526–1533.

    CAS  PubMed  Google Scholar 

  • Scheffzek, K., Ahmadian, M. R., Wiesmuller, L., Kabsch, W., Stege, P., Schmitz, F., and Wittinghofer, A. (1998). Structural analysis of the GAP-related domain from neurofibromin and its implications. EMBO J., 17, 4313–4327.

    Article  CAS  PubMed  Google Scholar 

  • Settleman, J., Albright, C. F., Foster, L. C., and Weinberg, R. A. (1992). Association between GTPase activators for Rho and Ras families. Nature, 359, 153–155.

    Article  CAS  PubMed  Google Scholar 

  • Springer, S., Spang, A., and Schekman, R. (1999). A primer on vesicle budding. Cell, 97, 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Sternweis, P. C., and Gilman, A. G. (1982). Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride. Proc. Natl. Acad. Sci., USA, 79, 4888–4891.

    CAS  PubMed  Google Scholar 

  • Stowers, L., Yelon, D., Berg, L. J., and Chant, J. (1995) Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl. Acad. Sci., USA, 92, 5027–5031.

    CAS  PubMed  Google Scholar 

  • Szafer, E., Pick, E., Rotman, M., Zuck, S., Huber, I., and Cassel, D. (2000). Role of coatomer and phospholipids in GTPase-activating protein-dependent hydrolysis of GTP by ADP-ribosylation factor-1. J. Biol. Chem., 275, 23615–23619.

    Article  CAS  PubMed  Google Scholar 

  • Tsubouchi, A., Sakakura, J., Yagi, R., Mazaki, Y., Schaefer, E., Yano, H., and Sabe, H. (2002). Localized suppression of RhoA activity by Tyr31/118-phosphorylated paxillin in cell adhesion nd migration. J. Cell Biol., 159, 673–683.

    Article  CAS  PubMed  Google Scholar 

  • Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., Bagrodia, S., Thomas, S., and Leventhal, P. S. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J. Cell Biol., 145, 851–863.

    Article  CAS  PubMed  Google Scholar 

  • Turner, C. E. (2000). Paxillin and focal adhesion signalling. Nature Cell Biol., 2, E231–E236.

    Article  CAS  PubMed  Google Scholar 

  • Uchida, H., Kondo, A., Yoshimura, Y., Mazaki, Y., and Sabe, H. (2001). PAG3/Papa/KIAA0400, a GTPase-activating protein for ADP-ribosylation factor (ARF), regulates ARF6 in Fcγ receptor-mediated phagocytosis of macrophages. J. Exp. Med., 193, 955–966.

    Article  CAS  PubMed  Google Scholar 

  • Vitale, N., Patton, W. A., Moss, J., Vaughan, M., Lefkowitz, R. J., and Premont, R. T. (2000). GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J. Biol. Chem., 275, 13901–13906.

    CAS  PubMed  Google Scholar 

  • Wu, W. J., Erickson, J. W., Lin, R., and Cerione, R. A. (2000). The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature, 405, 800–804.

    CAS  PubMed  Google Scholar 

  • Zhang, Q., Cox, D., Tseng, C.C., Donaldson, J.G., and Greenberg, S.(1998). A requirement for ARF6 in Fcγ receptor-mediated phagocytosis in macrophages. J. Biol. Chem., 273, 19977–19981.

    CAS  PubMed  Google Scholar 

  • Zhao, Z. S., Manser, E., Loo, T. H., and Lim, L. (2000). Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol., 20, 6354–6363.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Sabe, H. (2004). Paxillin-Associated Arf GAPs. In: ARF Family GTPases. Proteins and Cell Regulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2593-9_9

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2593-9_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1719-3

  • Online ISBN: 978-1-4020-2593-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics