Skip to main content

Arf GTPase-Activating Protein 1

  • Chapter
Book cover ARF Family GTPases

Part of the book series: Proteins and Cell Regulation ((PROR,volume 1))

  • 138 Accesses

Abstract

Regulators of Arf activity include a family of proteins with a shared domain, the cysteine-rich Arf GAP domain, that is responsible for activating the latent GTPase activity of Arfs. The first of these to be discovered, Arf GAP1 is the focus of this chapter. It’s role in the cellular actions of Arfs, particularly vesicular traffic, and the regulation of Arf GAP1 by other factors, e.g., lipids, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amor, J. C., Harrison, D. H., Kahn, R. A., and Ringe, D. (1994). Structure of the human ADP-ribosylation factor 1 complexed with GDP. Nature, 372, 704–708.

    CAS  PubMed  Google Scholar 

  • Andreev, J., Simon, J. P., Sabatini, D. D., Kam, J., Plowman, G., Randazzo, P. A., and Schlessinger, J. (1999). Identification of a new Pyk2 target protein with Arf-GAP activity. Mol. Cell. Biol., 19, 2338–2350.

    CAS  PubMed  Google Scholar 

  • Andres, D. A., Rhodes, J. D., Meisel, R. L., and Dixon, J. E. (1991). Characterization of the carboxyl-terminal sequences responsible for protein retention in the endoplasmic reticulum. J. Biol. Chem., 266, 14277–14282.

    CAS  PubMed  Google Scholar 

  • Antonny, B., Beraud-Dufour, S., Chardin, P., and Chabre, M. (1997a). N-terminal hydrophobic residues of the G-protein ADP-ribosylation factor-1 insert into membrane phospholipids upon GDP to GTP exchange. Biochemistry, 36, 4675–4684.

    Article  CAS  PubMed  Google Scholar 

  • Antonny, B., Huber, I., Paris, S., Chabre, M., and Cassel, D. (1997b). Activation of ADP-ribosylation factor 1 GTPase-activating protein by phosphatidylcholine-derived diacylglycerols. J. Biol. Chem., 272, 30848–30851.

    Article  CAS  PubMed  Google Scholar 

  • Antonny, B., Madden, D., Hamamoto, S., Orci, L., and Schekman, R. (2001). Dynamics of the COPII coat with GTP and stable analogues. Nat. Cell. Biol., 3, 531–537.

    Article  CAS  PubMed  Google Scholar 

  • Antonny, B., and Schekman, R. (2001). ER export: public transportation by the COPII coach. Curr. Opin. Cell. Biol., 13, 438–443.

    Article  CAS  PubMed  Google Scholar 

  • Aoe, T., Cukierman, E., Lee, A., Cassel, D., Peters, P. J., and Hsu, V. W. (1997). The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. EMBO J., 16, 7305–7316.

    Article  CAS  PubMed  Google Scholar 

  • Aoe, T., Huber, I., Vasudevan, C., Watkins, S. C., Romero, G., Cassel, D., and Hsu, V. W. (1999). The KDEL receptor regulates a GTPase-activating protein for ADP-ribosylation factor 1 by interacting with its non-catalytic domain. J. Biol. Chem., 274, 20545–20549.

    Article  CAS  PubMed  Google Scholar 

  • Aoe, T., Lee, A. J., van Donselaar, E., Peters, P. J., and Hsu, V. W. (1998). Modulation of intracellular transport by transported proteins: insight from regulation of COPI-mediated transport. Proc. Natl. Acad. Sci., USA, 95, 1624–1629.

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti, L., Mironov, A. A., Jr., Martinez-Menarguez, J. A., Martella, O., Fusella, A., Baldassarre, M., Buccione, R., Geuze, H. J., Mironov, A. A., and Luini, A. (1998). Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell, 95, 993–1003.

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann, T., Daumke, O., Herbrand, U., Kuhlmann, D., Stege, P., Ahmadian, M. R., and Wittinghofer, A. (2002). Rap-specific GTPase activating protein follows an alternative mechanism. J. Biol. Chem., 277, 12525–12531.

    CAS  PubMed  Google Scholar 

  • Brown, M. T., Andrade, J., Radhakrishna, H., Donaldson, J. G., Cooper, J. A., and Randazzo, P. A. (1998). ASAP1, a phospholipid-dependent Arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol. Cell. Biol., 18, 7038–7051.

    CAS  PubMed  Google Scholar 

  • Cherfils, J., Menetrey, J., Mathieu, M., Le Bras, G., Robineau, S., Beraud-Dufour, S., Antonny, B., and Chardin, P. (1998). Structure of the Sec7 domain of the Arf exchange factor ARNO. Nature, 392, 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Click, E. S., Stearns, T., and Botstein, D. (2002). Systematic Structure-Function Analysis of the Small GTPase Arf1 in Yeast. Mol. Biol. Cell., 13, 1652–1664.

    Article  CAS  PubMed  Google Scholar 

  • Cosson, P., and Letourneur, F. (1994). Coatomer interaction with di-lysine endoplasmic reticulum retention motifs. Science, 263, 1629–1631.

    CAS  PubMed  Google Scholar 

  • Cukierman, E., Huber, I., Rotman, M., and Cassel, D. (1995). The ARF1 GTPase-activating protein: zinc finger motif and Golgi complex localization. Science, 270, 1999–2002.

    CAS  PubMed  Google Scholar 

  • Dominguez, M., Dejgaard, K., Fullekrug, J., Dahan, S., Fazel, A., Paccaud, J. P., Thomas, D. Y., Bergeron, J. J., and Nilsson, T. (1998). gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J. Cell. Biol., 140, 751–765.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, J. G., Cassel, D., Kahn, R. A., and Klausner, R. D. (1992a). ADP-ribosylation factor, a small GTP-binding protein, is required for binding of the coatomer protein beta-COP to Golgi membranes. Proc. Natl. Acad. Sci., USA, 89, 6408–6412.

    CAS  PubMed  Google Scholar 

  • Donaldson, J. G., Finazzi, D., and Klausner, R. D. (1992b). Brefeldin A inhibits Golgi membrane-catalyzed exchange of guanine nucleotide onto ARF protein. Nature, 360, 350–352.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson, J. G., and Jackson, C. L. (2000). Regulators and effectors of the ARF GTPases. Curr. Opin. Cell Biol., 12, 475–482.

    Article  CAS  PubMed  Google Scholar 

  • Emery, G., Rojo, M., and Gruenberg, J. (2000). Coupled transport of p24 family members. J. Cell. Sci., 113 (Pt 13), 2507–2516.

    CAS  PubMed  Google Scholar 

  • Eugster, A., Frigerio, G., Dale, M., and Duden, R. (2000). COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J., 19, 3905–3917.

    Article  CAS  PubMed  Google Scholar 

  • Fiedler, K., Veit, M., Stamnes, M. A., and Rothman, J. E. (1996). Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science, 273, 1396–1399.

    CAS  PubMed  Google Scholar 

  • Fullekrug, J., Suganuma, T., Tang, B. L., Hong, W., Storrie, B., and Nilsson, T. (1999). Localization and recycling of gp27 (hp24gamma3): complex formation with other p24 family members. Mol. Biol. Cell, 10, 1939–1955.

    CAS  PubMed  Google Scholar 

  • Goldberg, J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell, 95, 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, J. (1999). Structural and functional analysis of the ARF1-ARFGAP complex reveals a role for coatomer in GTP hydrolysis. Cell, 96, 893–902.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, J. (2000). Decoding of Sorting Signals by Coatomer through a GTPase Switch in the COPI Coat complex. Cell, 100, 671–679.

    Article  CAS  PubMed  Google Scholar 

  • Gommel, D., Orci, L., Emig, E. M., Hannah, M. J., Ravazzola, M., Nickel, W., Helms, J. B., Wieland, F. T., and Sohn, K. (1999). p24 and p23, the major transmembrane proteins of COPI-coated transport vesicles, form hetero-oligomeric complexes and cycle between the organelles of the early secretory pathway. FEBS Lett., 447, 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Hammonds-Odie, L. P., Jackson, T. R., Profit, A. A., Blader, I. J., Turck, C. W., Prestwich, G. D., and Theibert, A. B. (1996). Identification and cloning of centaurin-alpha. A novel phosphatidylinositol 3,4,5-trisphosphate-binding protein from rat brain. J. Biol. Chem., 271, 18859–18868.

    CAS  PubMed  Google Scholar 

  • Helms, J. B., and Rothman, J. E. (1992). Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature, 360, 352–354.

    Article  CAS  PubMed  Google Scholar 

  • Huber, I., Cukierman, E., Rotman, M., Aoe, T., Hsu, V. W., and Cassel, D. (1998). Requirement for both the amino-terminal catalytic domain and a non-catalytic domain for in vivo activity of ADP-ribosylation factor GTPase-activating protein. J. Biol. Chem., 273, 24786–24791.

    Article  CAS  PubMed  Google Scholar 

  • Huber, I., Rotman, M., Pick, E., Makler, V., Rothem, L., Cukierman, E., and Cassel, D. (2001). Expression, purification, and properties of ADP-ribosylation factor (ARF) GTPase activating protein-1. Methods Enzymol., 329, 307–316.

    CAS  PubMed  Google Scholar 

  • Jackson, T. R., Brown, F. D., Nie, Z., Miura, K., Foroni, L., Sun, J., Hsu, V. W., Donaldson, J. G., and Randazzo, P. A. (2000). ACAPs are arf6 GTPase-activating proteins that function in the cell periphery. J. Cell Biol., 151, 627–638.

    Article  CAS  PubMed  Google Scholar 

  • Kahn, R. A., and Gilman, A. G. (1986). The protein cofactor necessary for ADP-ribosylation of Gs by cholera toxin is itself a GTP binding protein. J. Biol. Chem., 261, 7906–7911.

    CAS  PubMed  Google Scholar 

  • Kondo, A., Hashimoto, S., Yano, H., Nagayama, K., Mazaki, Y., and Sabe, H. (2000). A New Paxillin-binding Protein, PAG3/Papalpha/KIAA0400, Bearing an ADP-Ribosylation Factor GTPase-activating Protein Activity, Is Involved in Paxillin Recruitment to Focal Adhesions and Cell Migration. Mol. Biol. Cell, 11, 1315–1327.

    CAS  PubMed  Google Scholar 

  • Krugmann, S., Anderson, K. E., Ridley, S. H., Risso, N., McGregor, A., Coadwell, J., Davidson, K., Eguinoa, A., Ellson, C. D., Lipp, P., Manifava, M., Ktistakis, N., Painter, G., Thuring, J. W., Cooper, M. A., Lim, Z. Y., Holmes, A. B., Dove, S. K., Michell, R. H., Grewal, A., Nazarian, A., Erdjument-Bromage, H., Tempst, P., Stephens, L. R., and Hawkins, P. T. (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell, 9, 95–108.

    Article  CAS  PubMed  Google Scholar 

  • Lanoix, J., Ouwendijk, J., Lin, C. C., Stark, A., Love, H. D., Ostermann, J., and Nilsson, T. (1999). GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J., 18, 4935–4948.

    Article  CAS  PubMed  Google Scholar 

  • Lanoix, J., Ouwendijk, J., Stark, A., Szafer, E., Cassel, D., Dejgaard, K., Weiss, M., and Nilsson, T. (2001). Sorting of Golgi resident proteins into different subpopulations of COPI vesicles: a role for ArfGAP1. J. Cell Biol., 155, 1199–1212.

    Article  CAS  PubMed  Google Scholar 

  • Letourneur, F., Gaynor, E. C., Hennecke, S., Demolliere, C., Duden, R., Emr, S. D., Riezman, H., and Cosson, P. (1994). Coatomer is essential for retrieval of dilysine-tagged proteins to the endoplasmic reticulum. Cell, 79, 1199–1207.

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz, J., Cole, N. B., and Donaldson, J. G. (1998). Building a secretory apparatus: role of ARF1/COPI in Golgi biogenesis and maintenance. Histochem. Cell Biol., 109, 449–462.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., Zhang, C., Xing, G., Chen, Q., and He, F. (2001). Functional characterization of novel human ARFGAP3. FEBS Lett., 490, 79–83.

    Article  CAS  PubMed  Google Scholar 

  • Majoul, I., Sohn, K., Wieland, F. T., Pepperkok, R., Pizza, M., Hillemann, J., and Soling, H. D. (1998). KDEL receptor (Erd2p)-mediated retrograde transport of the cholera toxin A subunit from the Golgi involves COPI, p23, and the COOH terminus of Erd2p. J. Cell Biol., 143, 601–612.

    Article  CAS  PubMed  Google Scholar 

  • Majoul, I., Straub, M., Hell, S. W., Duden, R., and Soling, H. D. (2001). KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev. Cell, 1, 139–153.

    Article  CAS  PubMed  Google Scholar 

  • Makler, V., Cukierman, E., Rotman, M., Admon, A., and Cassel, D. (1995). ADP-ribosylation factor-directed GTPase-activating protein. Purification and partial characterization. J. Biol. Chem., 270, 5232–5237.

    CAS  PubMed  Google Scholar 

  • Mandiyan, V., Andreev, J., Schlessinger, J., and Hubbard, S. R. (1999). Crystal structure of the ARF-GAP domain and ankyrin repeats of PYK2-associated protein beta. Embo J., 18, 6890–6898.

    Article  CAS  PubMed  Google Scholar 

  • Mazaki, Y., Hashimoto, S., Okawa, K., Tsubouchi, A., Nakamura, K., Yagi, R., Yano, H., Kondo, A., Iwamatsu, A., Mizoguchi, A., and Sabe, H. (2001). An ADP-ribosylation factor GTPase-activating protein Git2-short/KIAA0148 is involved in subcellular localization of paxillin and actin cytoskeletal organization. Mol. Biol. Cell, 12, 645–662.

    CAS  PubMed  Google Scholar 

  • Mironov, A. A., Beznoussenko, G. V., Nicoziani, P., Martella, O., Trucco, A., Kweon, H. S., Di Giandomenico, D., Polishchuk, R. S., Fusella, A., Lupetti, P., Berger, E. G., Geerts, W. J., Koster, A. J., Burger, K. N., and Luini, A. (2001). Small cargo proteins and large aggregates can traverse the Golgi by a common mechanism without leaving the lumen of cisternae. J. Cell Biol., 155, 1225–1238.

    Article  CAS  PubMed  Google Scholar 

  • Miura, K., Jacques, K. M., Stauffer, S., Kubosaki, A., Zhu, K., Hirsch, D. S., Resau, J., Zheng, Y., and Randazzo, P. A. (2002). ARAP1: a point of convergence for Arf and Rho signaling. Mol. Cell, 9, 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Nassar, N., Hoffman, G. R., Manor, D., Clardy, J. C., and Cerione, R. A. (1998). Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nat. Struct. Biol., 5, 1047–1052.

    Article  CAS  PubMed  Google Scholar 

  • Nickel, W., Sohn, K., Bunning, C., and Wieland, F. T. (1997). p23, a major COPI-vesicle membrane protein, constitutively cycles through the early secretory pathway. Proc. Natl. Acad. Sci., USA, 94, 11393–11398.

    Article  CAS  PubMed  Google Scholar 

  • Orci, L., Stamnes, M., Ravazzola, M., Amherdt, M., Perrelet, A., Sollner, T. H., and Rothman, J. E. (1997). Bidirectional transport by distinct populations of COPI-coated vesicles. Cell, 90, 335–349.

    Article  CAS  PubMed  Google Scholar 

  • Paris, S., Beraud-Dufour, S., Robineau, S., Bigay, J., Antonny, B., Chabre, M., and Chardin, P. (1997). Role of protein-phospholipid interactions in the activation of ARF1 by the guanine nucleotide exchange factor Arno. J. Biol. Chem., 272, 22221–22226.

    Article  CAS  PubMed  Google Scholar 

  • Pelham, H. R. (2001). Traffic through the Golgi apparatus. J. Cell Biol., 155, 1099–1101.

    Article  CAS  PubMed  Google Scholar 

  • Peyroche, A., Antonny, B., Robineau, S., Acker, J., Cherfils, J., and Jackson, C. L. (1999). Brefeldin A acts to stabilize an abortive ARF-GDP-Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol. Cell, 3, 275–285.

    Article  CAS  PubMed  Google Scholar 

  • Poon, P. P., Cassel, D., Spang, A., Rotman, M., Pick, E., Singer, R. A., and Johnston, G. C. (1999). Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function. EMBO J., 18, 555–564.

    Article  CAS  PubMed  Google Scholar 

  • Poon, P. P., Nothwehr, S. F., Singer, R. A., and Johnston, G. C. (2001). The Gcs1 and Age2 ArfGAP proteins provide overlapping essential function for transport from the yeast trans-Golgi network. J. Cell Biol., 155, 1239–1250.

    Article  CAS  PubMed  Google Scholar 

  • Poon, P. P., Wang, X., Rotman, M., Huber, I., Cukierman, E., Cassel, D., Singer, R. A., and Johnston, G. C. (1996). Saccharomyces cerevisiae Gcs1 is an ADP-ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci., USA, 93, 10074–10077.

    Article  CAS  PubMed  Google Scholar 

  • Premont, R. T., Claing, A., Vitale, N., Freeman, J. L., Pitcher, J. A., Patton, W. A., Moss, J., Vaughan, M., and Lefkowitz, R. J. (1998). beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc. Natl. Acad. Sci., USA, 95, 14082–14087.

    Article  CAS  PubMed  Google Scholar 

  • Premont, R. T., Claing, A., Vitale, N., Perry, S. J., and Lefkowitz, R. J. (2000). The GIT family of ADP-ribosylation factor GTPase-activating proteins. Functional diversity of GIT2 through alternative splicing. J. Biol. Chem., 275, 22373–22380.

    Article  CAS  PubMed  Google Scholar 

  • Puertollano, R., Randazzo, P. A., Presley, J. F., Hartnell, L. M., and Bonifacino, J. S. (2001). The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell, 105, 93–102.

    Article  CAS  PubMed  Google Scholar 

  • Randazzo, P. A., Andrade, J., Miura, K., Brown, M. T., Long, Y. Q., Stauffer, S., Roller, P., and Cooper, J. A. (2000). The Arf GTPase-activating protein ASAP1 regulates the actin cytoskeleton. Proc. Natl. Acad. Sci., USA, 97, 4011–4016.

    Article  CAS  PubMed  Google Scholar 

  • Rein, U., Andag, U., Duden, R., Schmitt, H. D., and Spang, A. (2002). ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. J. Cell Biol., 157, 395–404.

    Article  CAS  PubMed  Google Scholar 

  • Rittinger, K., Walker, P. A., Eccleston, J. F., Smerdon, S. J., and Gamblin, S. J. (1997). Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Nature, 389, 758–762.

    CAS  PubMed  Google Scholar 

  • Rothman, J. E., and Wieland, F. T. (1996). Protein sorting by transport vesicles. Science, 272, 227–234.

    CAS  PubMed  Google Scholar 

  • Scheffzek, K., Ahmadian, M. R., Kabsch, W., Wiesmuller, L., Lautwein, A., Schmitz, F., and Wittinghofer, A. (1997). The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science, 277, 333–338.

    Article  CAS  PubMed  Google Scholar 

  • Scheffzek, K., Ahmadian, M. R., and Wittinghofer, A. (1998). GTPase-activating proteins: helping hands to complement an active site. Trends Biochem. Sci., 23, 257–262.

    Article  CAS  PubMed  Google Scholar 

  • Schekman, R., and Orci, L. (1996). Coat proteins and vesicle budding. Science, 271, 1526–1533.

    CAS  PubMed  Google Scholar 

  • Seewald, M. J., Korner, C., Wittinghofer, A., and Vetter, I. R. (2002). RanGAP mediates GTP hydrolysis without an arginine finger. Nature, 415, 662–666.

    Article  CAS  PubMed  Google Scholar 

  • Sohn, K., Orci, L., Ravazzola, M., Amherdt, M., Bremser, M., Lottspeich, F., Fiedler, K., Helms, J. B., and Wieland, F. T. (1996). A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J. Cell Biol., 135, 1239–1248.

    Article  CAS  PubMed  Google Scholar 

  • Springer, S., Spang, A., and Schekman, R. (1999). A primer on vesicle budding. Cell, 97, 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Szafer, E., Pick, E., Rotman, M., Zuck, S., Huber, I., and Cassel, D. (2000). Role of coatomer and phospholipids in GTPase-activating protein-dependent hydrolysis of GTP by ADP-ribosylation factor-1. J. Biol. Chem., 275, 23615–23619.

    Article  CAS  PubMed  Google Scholar 

  • Szafer, E., Rotman, M., and Cassel, D. (2001). Regulation of GTP hydrolysis on ADP-ribosylation factor-1 at the Golgi membrane. J. Biol. Chem., 276, 47834–47839.

    CAS  PubMed  Google Scholar 

  • Tanigawa, G., Orci, L., Amherdt, M., Ravazzola, M., Helms, J. B., and Rothman, J. E. (1993). Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J. Cell Biol., 123, 1365–1371.

    Article  CAS  PubMed  Google Scholar 

  • Teal, S. B., Hsu, V. W., Peters, P. J., Klausner, R. D., and Donaldson, J. G. (1994). An activating mutation in ARF1 stabilizes coatomer binding to Golgi membranes. J. Biol. Chem., 269, 3135–3138.

    CAS  PubMed  Google Scholar 

  • Turner, C. E., Brown, M. C., Perrotta, J. A., Riedy, M. C., Nikolopoulos, S. N., McDonald, A. R., Bagrodia, S., Thomas, S., and Leventhal, P. S. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J. Cell Biol., 145, 851–863.

    Article  CAS  PubMed  Google Scholar 

  • Vitale, N., Patton, W. A., Moss, J., Vaughan, M., Lefkowitz, R. J., and Premont, R. T. (2000). GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J. Biol. Chem., 275, 13901–13906.

    CAS  PubMed  Google Scholar 

  • Wilson, D. W., Lewis, M. J., and Pelham, H. R. (1993). pH-dependent binding of KDEL to its receptor in vitro. J. Biol. Chem., 268, 7465–7468.

    CAS  PubMed  Google Scholar 

  • Yu, S., and M. G. Roth. (2002). Casein kinase-I regulates membrane-binding by ARF GAP1. Mol. Biol. Cell, 13, 2559–2570.

    CAS  PubMed  Google Scholar 

  • Zhang, C., Yu, Y., Zhang, S., Liu, M., Xing, G., Wei, H., Bi, J., Liu, X., Zhou, G., Dong, C., Hu, Z., Zhang, Y., Luo, L., Wu, C., Zhao, S., and He, F. (2000). Characterization, chromosomal assignment, and tissue expression of a novel human gene belonging to the ARF GAP family. Genomics, 63, 400–408.

    CAS  PubMed  Google Scholar 

  • Zhao, L., Helms, J. B., Brugger, B., Harter, C., Martoglio, B., Graf, R., Brunner, J., and Wieland, F. T. (1997). Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc. Natl. Acad. Sci., USA, 94, 4418–4423.

    CAS  PubMed  Google Scholar 

  • Zhao, L., Helms, J. B., Brunner, J., and Wieland, F. T. (1999). GTP-dependent binding of ADP-ribosylation factor to coatomer in close proximity to the binding site for dilysine retrieval motifs and p23. J. Biol. Chem., 274, 14198–14203.

    CAS  PubMed  Google Scholar 

  • Zhu, X., Boman, A. L., Kuai, J., Cieplak, W., and Kahn, R. A. (2000). Effectors increase the affinity of ADP-ribosylation factor for GTP to increase binding. J. Biol. Chem., 275, 13465–13475.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Cassel, D. (2004). Arf GTPase-Activating Protein 1. In: ARF Family GTPases. Proteins and Cell Regulation, vol 1. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2593-9_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2593-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1719-3

  • Online ISBN: 978-1-4020-2593-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics