Skip to main content

Urinary biomarkers and nephrotoxicity

  • Chapter
Clinical Nephrotoxins

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. National Research Council. Commission on Life Sciences Board on Environmental Studies and Toxicology. Committee on Biological Markers, Subcommittee on Biologic Markers in Urinary Toxicology. In: Biologic Markers in Urinary Toxicology. National Academy Press, Washington DC 1995; p. 16–21.

    Google Scholar 

  2. Bennett WM, Elzinga LW, Porter GA. Tubulointerstitial disease and toxic nephropathy. In: The Kidney. Brenner BM, Rector FC, Jr, (editors). WB Saunders, Philadelphia. London. Toronto, Montreal, Sydney, Tokyo 1991; p. 1430–1496.

    Google Scholar 

  3. Deistan HP. Renovascular hypertension and azotemia. N Engl J Med 1984; 311: 1114–1116.

    Google Scholar 

  4. Goering PL, Fowler BA. Regulation of lead inhibition of delta aminolevulinic acid dehydratase by high affinity lead-binding protein. J Pharmacol Exp Ther 1984; 231: 66–71.

    CAS  PubMed  Google Scholar 

  5. Morgensen CE. Urinary albumin excretion in early and long term juvenile diabetes. Scand J Clin Lab Invest 1971: 281: 101–109.

    Google Scholar 

  6. Mueller PW, Paschal DC, Hammel RR, Klincewicz SL, McNeal ML, Spierto B, Steinberg K. Chronic renal effects in three studies of men and women occupationally exposed to cadmium. Arch Environ Contam Toxicol 1992; 23: 125–136.

    Article  CAS  PubMed  Google Scholar 

  7. Goyer R. Cadium Nephrotoxicity. In: Nephrotoxic mechanisms of drugs and environmental toxins. Porter GA (editor). Plenum Med Bk Co, New York, London 1982; p. 305.

    Google Scholar 

  8. Buchet JP, Roels H, Bernard A, Lauwerys R. Assessment of renal function of workers exposed to inorganic lead, cadmium, and mercury vapors. J Occup Med 1980; 22: 741–750.

    CAS  PubMed  Google Scholar 

  9. Bernard AM, Moreau D, Lauwerys R. Comparison of retinal binding protein and β-2-microglobin in urine for the early detection of tubular proteinuria. Clin Chim Acta 1982; 116: 1–7.

    Google Scholar 

  10. Douglas JB, Healy JK. Nephrotoxicity effect of amphotericin B, including renal tubular acidosis. Am J Med 1969; 46: 154–162.

    CAS  PubMed  Google Scholar 

  11. Bennett WM, Plamp C, Porter GA. Drug related syndromes in clinical nephrology. Ann Int Med 1977; 87: 582–590.

    CAS  PubMed  Google Scholar 

  12. McMurray SD, Luft FC, Mazwell DR, Hamburger DH, Lleit S. Prevailing patterns and predictor variables in patients with acute tubular necrosis. Arch Intern Med 1978; 138: 950–955.

    Article  CAS  PubMed  Google Scholar 

  13. Cooper K, Bennett WM. Nephrotoxicity of common drugs used in clinical practice. Arch Intern Med 1987; 147: 1213–1218.

    CAS  PubMed  Google Scholar 

  14. Perneger TV, Whelton PK, Klag MJ. Risk of kidney failure associated with the use of acetaminophen, aspirin, and nonsteroidal antiinflammatory drugs. N Engl J Med 1994; 331: 1675–1679.

    Article  CAS  PubMed  Google Scholar 

  15. Ransohoff DF, Feinstein AR. Problems of spectrum and bias in evaluating the efficiency of diagnostic tests. N Engl J Med 1978; 299: 926–930.

    CAS  PubMed  Google Scholar 

  16. Lachs MS, Nchamkin I, Edelstein PH, Goldman J, Feinstein AR, Schwartz JS. Spectrum bias in the evaluation of diagnostic tests: lessons from the rapid dipstick test for urinary tract infection. Ann Intern Med 1992; 117: 135–140.

    CAS  PubMed  Google Scholar 

  17. Jaeschke R, Guyatt GH, Sackett DL for the Evidence-Based Working Group. Users’ guides to the medical literature, III: how to use an article about a diagnostic test. B: what are the results and will they help me in caring for my patients? JAMA 1994; 271: 703–707.

    CAS  PubMed  Google Scholar 

  18. Zweig MH, Campbell G. Receiver-operating characteristic plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561–577.

    CAS  PubMed  Google Scholar 

  19. Bonnardeaux A, Somerville P, Kaye M. A study on the reliability of dipstick urinalysis. Clin Nephrol 1994; 41: 167–172.

    CAS  PubMed  Google Scholar 

  20. Voswinckel P. A marvel of colors and ingredients. The story of urine test strips. Kidney Int 1994; 46 (Suppl 47): S3–S7.

    Google Scholar 

  21. Janssens PMW. New markers for analyzing the cause of hematuria. Kidney Int 1994; 46 (Suppl 47): S111–S114.

    Google Scholar 

  22. Hotta O, Taguma Y, Yusa N and Ooyama M. Analysis of mononuclear cells in urine using flow cytometry in glomerular diseases. Kidney Int 1994; 46 (Suppl 47): S117–S121.

    Google Scholar 

  23. Ruffing KA, Hoppes P, Blend D, Cugino A, Jarjoura D, Whittier FC. Eosinophils in urine revisited. Clin Nephrol 1994; 41: 163–166.

    CAS  PubMed  Google Scholar 

  24. Kaplan AA, Kohn OF. Fractional excretion of urea as a guide to renal dysfunction. Am J Nephrol 1992; 12: 49–54.

    CAS  PubMed  Google Scholar 

  25. Brochner-Mortensen J. Routine methods and their reliability for assessment of glomerular filtration rate in adults. Danish Med Bull 1978; 25: 181–202.

    CAS  PubMed  Google Scholar 

  26. Kastrup J, Petersen P, Bartram R, Hansen JM. The effect of trimethoprim on serum creatinine. Brit J Urol 1985; 57: 265–268.

    CAS  PubMed  Google Scholar 

  27. Cockroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41.

    Google Scholar 

  28. Jelliffee RW. Creatinine clearance: a bedside estimate. Ann Intern Med 1973; 79: 604–605.

    Google Scholar 

  29. Kampmann J, Siersbaek-Nielsen K, Kristensen M, Molholm-Hansen J. Rapid evaluation of creatinine clearance. Acta Med Scand 1974; 196: 517–520.

    CAS  PubMed  Google Scholar 

  30. Levey, AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999; 130: 461–470.

    CAS  PubMed  Google Scholar 

  31. Shemish O, Golbetz H, Kriss JP, Myers B. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int 1985; 28: 830–838.

    Google Scholar 

  32. Bauer JH, Brooks CS, Burch RN. Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 1982; 2: 337–347.

    CAS  PubMed  Google Scholar 

  33. Coresh J, Astor BC, McQuillan G, Kusek J, Greene T, Van Lente F, Levey AS. Calibration and random variation of the serum creatinine assay as critical elements of using equations to estimate glomerular filtration rate. Am J Kidney Dis 2002; 39: 920–929.

    Article  CAS  PubMed  Google Scholar 

  34. Gaspari F, Perico N, Remuzzi G. Measurement of glomerular filtration rate. Kidney Int 1997; 63: S151–S154.

    CAS  Google Scholar 

  35. Rocco MV, Buckalew VMJr, Moore LC, Shihabi ZK: Measurement of glomerular filtration rate using nonradioactive Iohexol: comparison of two one-compartment models. Am J Nephrol 1996; 16: 138–143.

    CAS  PubMed  Google Scholar 

  36. Maher FT, Nolan NG, Elverback LR. Comparison of simultaneous clearances of 125I-labeled sodium iothalamate and of inulin. Mayo Clin Proc 1971; 46: 690–691.

    CAS  PubMed  Google Scholar 

  37. Gaspan F, Amuchastegui CS, Guerini E, Perico N, Mosconi L, Ruggenenti P, Remuzzi G. Plasma clearance of nonradioactive iohexol as an alternative to renal clearance of inulin for measurement of glomerular filtration rate in humans. J Am Soc Nephrol 1993; 4: 315.

    Google Scholar 

  38. Aurell M. Accurate and feasible measurements of glomerular filtration rate — is the iohexol clearance the answer. Nephrol Dial Transplant 1994; 9: 1222–1224.

    CAS  PubMed  Google Scholar 

  39. Brown SCW, O’Reilly PH. Iohexol clearance for the determination of glomerular filtration rate in clinical practice: evidence for a new gold standard. J Urol 1991; 148: 675–679.

    Google Scholar 

  40. Bennett WM, Porter GA. Overview of clinical nephrotoxicity. In: Toxicology of the kidney. Hook JB, Goldstein RS (editors). Raven Press, New York 1993; p. 61–97.

    Google Scholar 

  41. Thomsen K, Schou M. Renal lithium excretion in man. Am J Physiol 1968; 215: 823–827.

    CAS  PubMed  Google Scholar 

  42. Whiting PH. The use of lithium clearance measurements as an estimate of glomerulo-tubular function. Renal Failure 1999; 21:421–426.

    CAS  PubMed  Google Scholar 

  43. Anastasio P, Frangiosa A, Papalia T, DeNapoli N, Capodicasa L, Loguercio C, DelVecchio BC, DeSanto NG. Renal tubular function by lithium clearance in liver cirrhosis. Sem Nephrol 2001; 21: 323–326.

    CAS  Google Scholar 

  44. Guder WG, Hofman W. Markers for the diagnosis and monitoring of renal tubular lesions. Clin Nephrol 1992; 38 (Suppl 1): S3–S7.

    PubMed  Google Scholar 

  45. Peterson PA, Evrin PE, Berggard I. Differentiation of glomerular, tubular, and normal proteinuria: determinations of urinary excretion of β-2-microglobin, albumin and total protein. J Clin Invest 1969; 48:1189–1198.

    CAS  PubMed  Google Scholar 

  46. Ivandic M, Hofmann W, Guder WG. Development and evaluation of a urine protein expert system. Clin Chem 1996, 42: 1214–1222.

    CAS  PubMed  Google Scholar 

  47. Lun A, Ivandic M, Priem F, Filler G, Kirschstein M, Ehrich JH, Guder WG. Evaluation of pediatric nephropathies by a computerized Urine Protein Expert System (UPES). Ped Nephrol 1999; 13: 900–906.

    Article  CAS  Google Scholar 

  48. Lau YK, Woo KT. SDS-PAGE is underutilized as a tool for investigating renal patients. Nephron 2002; 90: 227–229.

    Article  CAS  PubMed  Google Scholar 

  49. Ginsberg JM, Chang BS, Matarese RA, Garella S. Use of single voided urine samples to estimate quantitative proteinuria. N Engl J Med 1983; 309:1543–1548.

    CAS  PubMed  Google Scholar 

  50. Schwab SJ, Christensen RL, Dougherty K, Klahr S. Quantitation of proteinuria by the use of protein to creatinine ratio in single urine sample. Arch Intern Med 1987; 147: 943–949.

    Article  CAS  PubMed  Google Scholar 

  51. Torng S, Rigatto C, Rush DN, Nickerson P, Jeffery JR. The urine protein to creatinine ratio (P/C) as a predictor of 24-hour urine protein excretion in renal transplant patients. Transplantation 2001; 72:1453–1456.

    CAS  PubMed  Google Scholar 

  52. Bohle A, Mackensen-Haen S, von Gise H, Grund K-E, Wehrmann M, Batz Ch, Bogenschütz O, Schmitt H, Nagy J, Müller C, Müller G. The Consequences of Tubulo-Interstitial Changes for Renal Function in Glomerulopathies. A Morphometric and Cytological Analysis. Path Res Pract 1990; 186: 135–144.

    CAS  PubMed  Google Scholar 

  53. Nath KA. Tubulointerstitial changes as a major determinant in the progression of renal damage. Am J Kidney Dis 1992; 1: 1–17.

    Google Scholar 

  54. Bernard A, Lauwerys RR. Proteinuria: changes and mechanisms in toxic nephropathies. Crit Rev ToxicoI 1991; 21: 373–405.

    CAS  Google Scholar 

  55. Dennis V, Robinson RR. Proteinuria. In: The Kidney: physiology and pathophysiology. Seldin DW, Giebisch G (editors). River Press, New York 1985; p. 1805.

    Google Scholar 

  56. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The eftect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456–1462.

    CAS  PubMed  Google Scholar 

  57. Parving HH, Hommel E, Kamkjaer M, Gieses NJ. Effect of captopril on blood pressure and kidney function in normotensive insulin-dependent diabetics with nephropathy. Brit Med J 1989; 299: 533–536.

    CAS  PubMed  Google Scholar 

  58. Parving HH, Mogensen CE, Jensen HA, Evrin PE. Increased urinary albumin-excretion rate in benign essential hypertension. Lancet 1974; 1: 1190–1192.

    CAS  PubMed  Google Scholar 

  59. Gysler J, Schunack W, Jaehde U. Monitoring of chemotherapy-induced proteinuria using capillary zone electrophoresis. J Chromatography 1999; 721: 207–216.

    CAS  Google Scholar 

  60. Prinsen BHCMT, De Sain-Van der Velden MGM, Kaysen GA, Straver HWHC, Van Rijn HJM, Stellaard F, Berger R, Rabelink TJ. Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. J Am Soc Nephrol 2001; 12: 1017–1025.

    CAS  PubMed  Google Scholar 

  61. Tencer J, Frick IM, Oquist BW, Alm P, Rippe B. Size-selectivity of the glomerular barrier to high molecular weight proteins: upper size limitations of shunt pathways. Kidney Int 1998; 53(3): 709–715.

    Article  CAS  PubMed  Google Scholar 

  62. Schurek HJ, Neuman KH, Flohr, et al: the physiological and pathophysiological basis of glomerular capillarry permeability for plasma proteins and erythrocytes. Eur J Clin Chem Clin Biochem 1992; 30: 627–633.

    CAS  PubMed  Google Scholar 

  63. Schurek HJ, Neumann KH, Flohr H, Zeh M, Stolte H. Diagnostic and prognostic significance of proteinuria selectivity index in glomerular diseases. Clin Chim Acta 2000; 297: 73–83.

    Google Scholar 

  64. Bakoush O, Tencer J, Tapia J, Rippe B, Torffvit O. Higher urnary IgM excretion in type 2 diabetic nephropathy compared to type 1 diabetic nephropathy. Kidney Int 2002; 61: 203–208.

    Article  CAS  PubMed  Google Scholar 

  65. Tencer J, Bakoush O, Torffvit O. Diagnostic and prognostic significance of proteinuria selectivity index in glomerular diseases. Clin Chim Acta 2000; 297: 73–83.

    Article  CAS  PubMed  Google Scholar 

  66. Bazzi C, Petrini C, Rizza V, Arrigo G, Beltrame A, Pisano L, D’Amico G. Urinary excretion of IgG and α (1)-microglobulin predicts clinical course better than extent of proteinuria in membranous nephropathy. Am J Kidney Dis 2001; 38: 240–248.

    CAS  PubMed  Google Scholar 

  67. Levinson SS. An algorithmic approach using kappa/lambda ratios to improve the diagnostic accuracy of urine protein electrophoresis and to reduce the volume required for immunoelectrophoresis. Clin Chim Acta 1997; 262: 121–130.

    Article  CAS  PubMed  Google Scholar 

  68. Wong WK, Wieringa GE, Stec Z, Russell J, Cooke S, Keevil BG, Lockhart S. A comparison of three procedures for the detection of Bence-Jones proteinuria. Ann Clin Biochem 1997; 34: 371–374.

    CAS  PubMed  Google Scholar 

  69. Marshall T, Williams KM. Electophoretic analysis of Bence Jones proteinuria. Electrophoresis 1999; 20: 1307–1324.

    Article  CAS  PubMed  Google Scholar 

  70. Chew ST, Fitzwilliam J, Indridason OS, Kovalik EC. Role of urine and serum protein electrophoresis in evaluation of nephriticrange proteinuria. Am J Kidney Dis 1999; 34: 135–139.

    CAS  PubMed  Google Scholar 

  71. Levinson SS. Urine protein electrophoresis and immunofixation electrophoresis supplement one another in characterizing proteinuria. Ann Clin Lab Sci 2000; 30: 79–84.

    CAS  PubMed  Google Scholar 

  72. Corso A, Serricchio G, Zappasodi P, Klersy C, Bosoni T, Moratti R, Castagnola C, Lazzarino M, Pagnucco G, Bernasconi C. Assessment of renal function in patients with multiple myeloma, the role of urinary proteins. Ann Hematol 1999; 78: 371–375.

    Article  CAS  PubMed  Google Scholar 

  73. Bernard AC, Buchet JP, Roels H, Lauwerys R. Renal excretion of proteins and enzymes in workers exposed to cadmium. Eur J Clin Invest 1979: 9: 11–22.

    CAS  PubMed  Google Scholar 

  74. Friberg L, Procator M, Norberg GF, Kjellstrom T (editors). Cadmium in the environment. CRC Press, Cleveland 1974.

    Google Scholar 

  75. Simonsen O, Grubb A. Thysell H. The blood serum concentration of cystatin C (g-trace) as a measure of the glomerular filtration rate. Scand J Clin Lab Invest 1985: 45: 97–101.

    CAS  PubMed  Google Scholar 

  76. Wedeen RP, Udasin I, Fiedler N, D’Haese P, De Broe M, Gelpi E, Jones KW, Gochfeld M. Urinary biomarkers as indicators of renal disease. Renal Failure 1999; 21: 241–249.

    CAS  PubMed  Google Scholar 

  77. Berggard I, Beam AG. Isolation and properties of a low molecular weight β2-globulin occurring in human biological fluids. J Biol Chem 1968; 243: 4095–4103.

    CAS  PubMed  Google Scholar 

  78. Beetham R, Dawanay A, Landon J, Cattell R. A radioimmunoassay for retinal-binding protein in serum and urine. Clin Chem 1985; 31: 1364–1367.

    CAS  PubMed  Google Scholar 

  79. Price RG. The role of NAG (N-acetyl-β-d-glucosaminidase) in the diagnosis of kidney disease including the monitoring of nephrotoxicity. Clin Nephrol 1992; 38 (suppl 1): S14–S19.

    PubMed  Google Scholar 

  80. Marino M, Andrews D, Brown D, McLuskey RT. Trancytosis of retinol-binding protein across renal proximal tubule cells after megalin (gp 330)-mediated endocytosis. J Am Soc Nephrol 2001; 12: 637–648.

    CAS  PubMed  Google Scholar 

  81. Camara NO, Matos AC, Rodrigues DA, Pereira AB, Pacheco-Silva A. Urinary retinol binding protein is a good marker of progressive cyclosporine nephrotoxicity after heart transplant. Transplant Proc 2001; 33(3): 2129–2131.

    Article  CAS  PubMed  Google Scholar 

  82. Ekstrom B, Peterson PA, Berggard I. A urinary and plasma a-l-glycoprotein of low molecular weight: isolation and some properties. Biochem Biophys Res Commun 1975; 65: 1472–1535.

    Article  Google Scholar 

  83. Weber MH, Verwiebe R. α1-Microglobulin (Protein HC): features of a promising indicator of proximal tubular dysfunction. Eur J Clin Chem Clin Biochem 1992; 30: 683–691.

    CAS  PubMed  Google Scholar 

  84. Grubb A. Diagnostic value of analysis of cystatin C and protein HC in biological fluids. Clin Nephrol 1992; 38(Suppl 1): S20–S27.

    CAS  PubMed  Google Scholar 

  85. Tencer J, Thysell H, Grubb A: Analysis of proteinuria: Reference limits for urine excretion of albumin, protein HC, immunoglobin G, k-and l-chain immunoreactrivity, orosomucoid and α1-antitrypsin. Scand J Clin Lab Invest 1996; 56: 691–700.

    CAS  PubMed  Google Scholar 

  86. Teppo AM, Honkanen E, Ahonen J, Gronhagen-Riska C. Changes of urinary a1-microglobullin in the assessment of prognosis in renal transplant recipients. Transplantation 2000; 70: 1154–1159.

    CAS  PubMed  Google Scholar 

  87. Tsukahara H, Hiraoka M, Kuriyama M, Saito M, Morikawa K, Kuroda M, Tominaga T, Sudo M. Urinary α1-microglobulin as index of proximal tubule function in early infancy. Pediatr Nephrol 1993; 7: 199–201.

    CAS  PubMed  Google Scholar 

  88. Bakoush O, Grubb A, Rippe B, Tencer J. Urine excretion of protein HC in proteinuric glomerular diseases correlates to urine IgG but not to albuminuria. Kidney Int 2001; 60: 1904–1909.

    Article  CAS  PubMed  Google Scholar 

  89. Recio F, Villamil F. Charge selectivity and urine amylase isoenzymes. Kidney Int 1994; 46 (Suppl 47); S89–S92.

    Google Scholar 

  90. Baricos WH, Cortez SL, Le QC, Zhou Y, Dicarlo RM. O’Connor SE, Shah SV. Glomerular basement membrane degradation by endogenous cysteine proteinases in isolated glomeruli. Kidney Int 1990; 38: 395–401.

    CAS  PubMed  Google Scholar 

  91. Newman DJ, Thakkar H, Edwards RG, Wilke M, White T, Grubb AO, Price CP. Serum cystatin C: a replacement marker for creatinine as a biochemical marker of glomerular filtration rate. Kidney Int 1994: 46 (Suppl 47): S20–S21.

    Google Scholar 

  92. Norden AGW, Lapsley M, Lee PJ, Pusey CD, Scheinman SJ, Tam FWK, Thakker RV, Unwin RJ, Worng O. Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int 2001; 60: 1885–1892.

    Article  CAS  PubMed  Google Scholar 

  93. Kumar S, Muchmore A. Tamm-Horsfall protein-urimodulin (1950–1990). Kidney Int 1990; 37: 1395–1401.

    CAS  PubMed  Google Scholar 

  94. Hoyer JR, Seiler MW. Pathophysiology of Tamm-Horsfall protein. Kidney Int 1979; 16: 279–289.

    CAS  PubMed  Google Scholar 

  95. Goodall AA, Marshall RD. Effects of freezing on the estimated amounts of Tamm-Horsfall glycoprotein in urine, as determined by radioimmunoassay. Biochem J 1980; 189: 533–539.

    CAS  PubMed  Google Scholar 

  96. Thornley C, Dawnay A, Cattell WR. Human Tamm-Horsfall glycoprotein: urine and plasma levels in normal subjects and patients with renal disease determined by a fully validated radioimmunoassay. Clin Sci 1985; 68: 529–535.

    CAS  PubMed  Google Scholar 

  97. Lynn KL, Marshall RO. Excretion of Tamm-Horsfall glycoprotein in renal disease. Clin Sci 1985; 68: 253–257.

    Google Scholar 

  98. Plummer DR. Noorazar S, Obatomi DK, Haslan JD. Assessment of renal injury by urinary enzymes. Uremia Invest 1985; 9: 97–102.

    CAS  PubMed  Google Scholar 

  99. Lockwood TD, Bosmann HB. The use of urinary N-acetyl-B-D-glucosaminidase in human renal toxicology I. Partial biochemical characterization and excretion in humans and release from the isolated perfused rat kidney. Toxicol Appl Pharmacol 1979; 49: 323–336.

    CAS  PubMed  Google Scholar 

  100. Jung K, Scholz D. An optimized assay of alanine aminopeptidase activity in the urine. Clin Chem 1980; 26: 1251–1254.

    CAS  PubMed  Google Scholar 

  101. Price RG. Urinary enzymes. Nephrotoxicity and renal disease. Toxicol 1982; 23: 99–134.

    Article  CAS  Google Scholar 

  102. Dubach UC, LeHir M. Conical evaluation of the diagnostic use of urinary enzymes. Contrib Nephrol 1984; 42: 74–80.

    CAS  PubMed  Google Scholar 

  103. Mutti A. Detection of renal disease in humans. Developing markers and methods. Toxicol Lett 1989; 46: 177–191.

    Article  CAS  PubMed  Google Scholar 

  104. Vanderlinde RE. Urinary enzymes measurements of renal disorders. Ann Clin Lab Sci 1981; 11: 189–201.

    CAS  PubMed  Google Scholar 

  105. Maruhn D, Fuchs I, Mues G, Bock KD. Normal limits of excretion of eleven enzymes. Clin Chem 1976; 22: 1567–1574.

    CAS  PubMed  Google Scholar 

  106. Koenig H, Goldstone A, Hughes C. Lysosomal enzymuria in the testosterone treated mouse. Lab Invest 1978; 39: 329–341.

    CAS  PubMed  Google Scholar 

  107. Ceriotti G. A new look at the measurement and interpretation of enzyme assays. Ann Clin Biochem 1976; 13: 345–353.

    CAS  PubMed  Google Scholar 

  108. Guder WG. Hofmann W. Future markers for the diagnosis of renal lesions. In: Nephrotoxicity: mechanism, early diagnosis and therapeutic management. Bach PH, Gregg NJ, Wilks MF, Delacruz L. editors. Marcel Dekker, New York 1991; p. 575–580.

    Google Scholar 

  109. Dubach UC, LeHir M, Gandhi R. Use of urinary enzymes as markers of nephrotoxicity. Toxicol Lett 1988; 46: 193–196.

    Google Scholar 

  110. Clemo FA. Urinary enzyme evaluation of nephrotoxicity in the dog. Toxicol Pathol 1998; 26: 29–32.

    CAS  PubMed  Google Scholar 

  111. Price RG, Berndt WD, Finn WF, Aresini G, Manley SE, Fels LM, Shaikh ZA, Mutti A. Urinary biomarkers to detect significant effects of environmental and occupational exposure to nephrotoxins. III. Minimal battery of tests to assess subclinical nephrotoxicity for epidemiological studies based on current knowledge. Renal Failure 1997; 19(4): 535–552.

    CAS  PubMed  Google Scholar 

  112. Rosalki SB, Wilkinson JH. Urinary lactic dehydrogenase in renal disease. Lancet 1959; 2: 327–328.

    CAS  PubMed  Google Scholar 

  113. Mitic-Zlatkovic M, Stefanovic V. Acute effects of acetaminophen on renal function and urinary excretion of some proteins and enzymes in patients with kidney disease. Renal Failure 1999; 21: 525–532.

    CAS  PubMed  Google Scholar 

  114. Kreisel W, Wolf LM, Grotz W, Grieshaber M. Renal tubular damage: an extraintestinal manifestation of chronic inflammatory bowel disease. Eur J Gastroent Hepatol 1996; 8: 461–468.

    CAS  Google Scholar 

  115. Langhendries JP, Battisti O, Bertrand JM, Francois A, Darimont J, Ibrahim S, Tulkens PM, Bernard A, Buchet JP, Scalais E. Once-a-day adminstration of amikacin in neonates: assessment of nephrotocicity and ototoxicity. Dev Pharm Ther 1993; 20: 220–230.

    CAS  Google Scholar 

  116. Ruilope LM. Renal damage in hypertension. J Cardiovas Risk 1995; 2: 40–44.

    CAS  Google Scholar 

  117. Rustom R, Costigan M, Shenkin A, Bone JM. Proteinuria and renal tubular damage: urinary N-acetyl-β-d-glucosaminidase and isoenzymes in dissimilar renal disease. Am J Nephrol 1998; 18: 179–185.

    Article  CAS  PubMed  Google Scholar 

  118. Mondorf AW. Urinary enzymatic markers of renal damage. In: The aminoglycosides: microbiology, clinical use and toxicology. Whelton A, Neu HC (editors). Marcel Dekker Inc., New York, Basel 1982; p. 283.

    Google Scholar 

  119. Meyer BR, Fischhein A, Rosenman K. Increased urinary enzyme excretion in workers exposed to nephrotoxic chemicals. Am J Med J 1984; 76: 989–998.

    CAS  Google Scholar 

  120. Mueller PW. MasNeil ML, Steinberg KK. Stabilization of alanine aminopeptidase. γ-glutamyltransferaseand N-acetyl-β-d-glucosaminidasein normal urine. Arch Environ Contam Toxicol 1986; 15: 343–347.

    Article  CAS  PubMed  Google Scholar 

  121. Mattenheimer H. Enzymes in renal disease. Ann Clin Lab Sci 1977; 7: 422–432.

    CAS  PubMed  Google Scholar 

  122. Davey PG, Cowley DM, Geddes AM, Terry J. Clinical evaluation of β-2-microglobulin, murmamidase, and alanine aminopeptidase as markers of gentamicin nephroxicity. Contrib Nephrol 1984; 42: 100–106.

    CAS  PubMed  Google Scholar 

  123. Scherberich JE, Mondorf W, Falkenberg FW, Pierard D, Scoeppe W. Monitoring drug nephrotoxicity. Contrib Nephrol 1984; 42: 81–92.

    CAS  PubMed  Google Scholar 

  124. Mueller PW, Smith SJ, Steimberg KK, Thun MJ. Chronic renal tubular effects in relation to urine cadmium levels. Nephron 1989; 52: 45–54.

    CAS  PubMed  Google Scholar 

  125. Porter GA. Contrast associated nephropathy. Am J Cardiol 1989; 64: E22–E26.

    Article  Google Scholar 

  126. Mueller PW, Delaney V, MacNeil ML, Caudill SP, Steimberg KK. Indicators of acute renal transplant rejection in patients treated with cyclosporine. Clin Chem 1990; 36: 759–764.

    CAS  PubMed  Google Scholar 

  127. Tataranni G, Zavagli G, Farinelli R, Malacarne F, Fiocchi O, Nunzi L, Scaramuzzo P, Scorrano R. Usefulness of the assessment of urinary enzymes and microproteins in monitoring cyclosporine nephrotoxicity. Nephron 1992; 60: 314–318.

    CAS  PubMed  Google Scholar 

  128. Zafirovska KG, Bogdanovska SV, Marina N, Gruev T, Lozance L. Urinary excretion of three specific renal tubular enzymes in patients treated with nonsteroidal anti-inflammatory drugs (NSAID). Renal Failure 1993; 15: 51–54.

    CAS  PubMed  Google Scholar 

  129. Donadio C, Tramont G, Giordani R, Lucchetti A, Calderazzi A, Ferrari P, Bioanchi C. Renal effects and nephrotoxicity of contrast media in renal patients. Contrib Nephrol 1993; 101: 241–250.

    CAS  PubMed  Google Scholar 

  130. Hofmeister R, Bhargaya AS, Gunzel P. Value of enzyme determinations in urine for the diagnosis of nephrotoxicity in rats. Clin Chem Acta 1986; 160: 163–167.

    Article  CAS  Google Scholar 

  131. Whiting PH, Thomson AW, Simpson JG. Cyclosporine and renal enzyme excretion. Clin Nephrol 1986; 25 (suppl 1): S100–S104.

    CAS  PubMed  Google Scholar 

  132. Obatomi DK. Plummer DT, Haslam JD. Enzymuria as an index of nephrotoxicity over long term exposure of rats to gentamicin. In: Nephrotoxicity: mechanism, early diagnosis and therapeutic management. Bach PH, Gregg NJ, Wilks MF, Oelacruz L (editors). Marcel Dekker Inc, New York 1991; p. 555–561.

    Google Scholar 

  133. Burdmann EA, Andoh TF, Franceschini N, Lindsley J, Vora I, Bennett WM. Renal and metabolic effects of short-term rapamycin (RAPA) treatment in salt depleted rats. J Am Soc Nephrol 1993: 4: 910.

    Google Scholar 

  134. Burdmann EA, Rosen S, Lindsley J, Elzinga L, Andoh T, Bennett WM. Production of less chronic nephrotoxicity by cyclosporine G than cyclosporine A in a low salt rat model. Transplantation 1993: 55: 969–966.

    Google Scholar 

  135. Andoh TF, Burdmann EA, Lindsley J, Houghton DC, Bennett WM. Enhancement of FK 506 nephrotoxicity by sodium depletion in an experimental rat model. Transplantation 1994; 57: 483–489.

    CAS  PubMed  Google Scholar 

  136. Burdmann EA, Andoh TF, Lindsley J, Russell J, Bennett WM, Porter GA. Urinary enzymes as biomarkers of renal injury in experimental nephrotoxicity of immunosuppressive drugs. Renal Failure 1994; 16: 161–168.

    CAS  PubMed  Google Scholar 

  137. Lauwerys RR, Bernard A. Early detection of the nephrotoxic effects of industrial chemicals: state of the art and future prospects. Am J Ind Med 1987; 11: 275–285.

    CAS  PubMed  Google Scholar 

  138. Verpooten GF, Nuyts GD, Hoylaerts MF, Nouwen EJ, Vssanyiova Z, Dlhopolcek P, De Broe ME. Immunoassay in urine of a specific marker for proximal tubular S3 segment. Clin Chem 1992; 38: 642–647.

    CAS  PubMed  Google Scholar 

  139. Nuyts GD, Roels HA, Verpooten GF, Bernard AM, Lauwerys RR, De Broe ME. Intestinal type alkaline phosphatase in urine as an indicator of mercury induced effects on the S3 segment of the proximal tubule. Nephrol Dial Transplant 1992; 7: 225–229.

    CAS  PubMed  Google Scholar 

  140. Verpooten GF, Nouwen EJ, Hoylaerts MF, Hendrix PG, De Broe ME. Segment specific localization of intestinal type alkaline phosphatase in human kidney. Kidney Int 1989; 36: 617–625.

    CAS  PubMed  Google Scholar 

  141. Nouwen EJ, De Broe ME. Human intestinal versus tissue-nonspecific alkaline phosphatase as complementary urinary markers for the proximal tubule. Kidney Int 1994; 46 (Suppl 47): S43–51.

    Google Scholar 

  142. Hayes JD, Pulford DJ. The glutathione S-transferase supergene family: Regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 1995; 30: 445–600.

    CAS  PubMed  Google Scholar 

  143. Branten AJ, Mulder TP, Peters WH, Assmann KJ, Wetzels JF. Urinary excretion of glutathione S transferase α and pi in patients with proteinuria: reflection of t site of tubular injury. Nephron 2000; 85: 120–126.

    Article  CAS  PubMed  Google Scholar 

  144. Sundberg AG, Appelkvist EL, Backman L, Dallner G. Urinary pi-class glutathione transferase as an indicator of tubular damage in the human kidney. Nephron 1994; 67: 308–316.

    CAS  PubMed  Google Scholar 

  145. Sundberg A, Appelkvist EL, Dallner G, Nilson R. Glutathione transferases in the urine: sensitive methods for detection of kidney damage induced by environmental agents in humans. Environm Health Persp 1994; 102 (Suppl 3): 293–296.

    CAS  Google Scholar 

  146. Savary E, Nemes B, Jaray J, Dinya E, Borka P, Varga M, Sulyok B, Remport A, Toth A, Perner F. Prediction of early renal graft function by the measurement of donor urinary glutathione S-transferase. Transplantation 2000; 69: 1398–1402.

    Google Scholar 

  147. Polak WP, Kosieradzki M, Kwiatkowski A, Danielewicz R, Lisik W, Michalak G, Paczek L, Lao M, Walaszewski J, Rowinski WA: Activity of glutathione S-transferases in the urine of kidney transplant recipients during the first week after transplantation. Annals Transplant 1999; 4: 42–45.

    CAS  Google Scholar 

  148. Baron S, Tyring SK, Fleischmann WR Jr, Coppenhaver DH, Niesel DW, Klimpel GR, Stanton GJ, Hughes TK. The interferons. Mechanisms of action and clinical applications. JAMA 1991; 266(10): 1375–1383.

    Article  CAS  PubMed  Google Scholar 

  149. Hirano T. The biology of interleukin-6. Chem Immunol 1992; 51: 153–180.

    CAS  PubMed  Google Scholar 

  150. Ruef C, Budde K, Lacy J, Northemann W, Baumann M, Sterzel RB, Coleman DL. Interleukin-6 is an autocrine growth factor for mesangial cells. Kidney Int 1990; 38: 249–257.

    CAS  PubMed  Google Scholar 

  151. Horii Y, Muraguchi A, Iwano M, Matsuda T, Hira-yama T, Yamada H, Fujii Y, Dohi K, Ishikawa H, Ohmoto Y, Yoshizaki K, Hirano T, Kishimoto T. Involvement of interleukin-6 in mesangial proliferative glomerulonephritis. J Immunol 1989; 143: 3949–3955.

    CAS  PubMed  Google Scholar 

  152. Horii Y, Iwano M, Hirata E, Shiiki H, Fujii Y, Dohi K, Ishikawa H. Role of interleukin-6 in the progression of mesangial proliferative glomerulonephritis. Kidney Int 1993; 43 (Suppl 39): S71–S75.

    CAS  Google Scholar 

  153. Jutley RS, Youngson GG, Eremin O, Ninan GK. Serum cytokine profile in reflux nephropathy. Ped Surg Interna 2000; 16: 64–68.

    CAS  Google Scholar 

  154. Gomez-Chiarri M, Ortiz A, Seron D, Gonzalez E, Egido J. The intercrine superfamily and renal disease. Kidney Int 1993; 43 (Suppl 39): S81–S85.

    Google Scholar 

  155. Wada T, Yokoyama H, Tomosugi N, Hisada Y, Ohta S, Naito T, Kobayashi K-I, Mukaida N, Matsushima K. Detection of urinary interleukin-8 in glomerular disease. Kidney Int 1994; 46: 455–460.

    CAS  PubMed  Google Scholar 

  156. Gormley SM, McBride WT, Armstron MA, Young IS, McClean E, MacGowna SW, Campalani G, McMurry TJ: Plasma and Urinary cytokine homeostasis and renal dysfunction during cardiac surgery. Anesthesiology 2000; 93: 1210–1216.

    CAS  PubMed  Google Scholar 

  157. Baud L, Oudinet JP, Bens M, Noe L, Peraldi MN, Etienne J, Ardaillou R. Production of tumor necrosis factor by rat mesangial cells in response to bacterial lipopolysaccharide. Kidney Int 1989; 35: 1111–1118.

    CAS  PubMed  Google Scholar 

  158. Baud L, Fouqueray B, Philippe C, Amrani A. Tumor necrosis factor α and mesangial cells. Kidney Int 1992; 41: 600–603.

    CAS  PubMed  Google Scholar 

  159. Radeke HH, Meier B, Topley N, Floge J, Habermehl GG, Resch K. Interleukin l-α and tumor necrosis factor-α induce oxygen radical formation in mesangial cells. Kidney Int 1990; 37: 767–775.

    CAS  PubMed  Google Scholar 

  160. Zoja C, Wang JM, Bettoni S, Sironi M, Renzi D, Chiaffarino F, Abboud HE, Van Damme J, Mantovani A, Remuzzi G, Rambaldi A. Interleukin-1b and tumor necrosis factor-α induce gene expression and production of leukocyte chemotactic factors, colony-stimulating factors, and interleukin-6 in human mesangial cells. Am J Pathol 1991; 138: 991–1003.

    CAS  PubMed  Google Scholar 

  161. Tomosugi N, Cashman S, Hay H, Pusey C, Evans D, Shaw A, Rees A. Modulation of antibodiy-mediated glomerular injury in vivo by bacterial lipopolysaccharide, tumor necrosis factor, and IL-I. J Immunol 1989; 142: 3083–3090.

    CAS  PubMed  Google Scholar 

  162. Brockhaus M, Bar-Khayim Y, Gurwicz S, Frensdorff A, Haran N. Plasma tumor necrosis factor soluble receptors in chronic renal failure. Kidney Int 1992; 42: 663–667.

    CAS  PubMed  Google Scholar 

  163. Boucher A, Droz, D, Adafer E, Noel L. Characterization of Mononuclear Cell Subsets in Renal Cellular Interstitial Infiltrates. Kidney Int 1986; 29: 1043–1049.

    CAS  PubMed  Google Scholar 

  164. Danoff TM. Chemokines in Interstitial Injury. Kidney Int 1998; 53: 1807–1808.

    Article  CAS  PubMed  Google Scholar 

  165. Prodjosudjadi, W, Gerritsma JSJ, Klar-Mohamad N, Gerritsen AF, Bruijn J.A., Daha MR, Van Es LA. Production and Cytokine-mediated Regulation of Monocyte Chemoattractant Protein-1 by Human Proximal Tubular Epithelial Cells. Kidney Int 1995; 48: 1477–1486.

    CAS  PubMed  Google Scholar 

  166. Lloyd CM, Minto AW, Dorf ME, Proudfoot A, Wells TNC, Salant DJ, Gutierrez-Ramos JC. RANTES and Monocyte Chemoattractant Protein-1 (MCP-1) Play an Important Role in the Inflammatory Phase of Crescentic Nephritis, but only MCP-1 is involved in Crescent Formation and Interstitial Fibrosis. J Exp Med 1997; 185: 1371–1380.

    Article  CAS  PubMed  Google Scholar 

  167. Wang Y, Chen J, Chen L, Tay Y, Rangan GK, Harris DCH. Induction of Monocyte Chemoattractant Protein-1 in Proximal Tubule Cells by Urinary Protein. J Am Soc Nephrol 1997; 8: 1537–1545.

    CAS  PubMed  Google Scholar 

  168. Eddy, A.A.; Giachelli, C.M. Renal Expression of Genes that Promote Interstitial Inflammation and Fibrosis in rats with Protein-overload Proteinuria. Kidney Int 1995; 47: 1546–1557.

    CAS  PubMed  Google Scholar 

  169. Tsukasa Morii, Hiroki Fujita, Takuma Narita, Jun Koshimura, Takashi Shimotomai, Hiromi Fujishima, Naomi Yoshioka, Hirokazu Imai, Masafumi Kakei, and Seiki Ito: Increased Urinary Excretion of Monocyte Chemoattractant Protein-1 in Proteinuric Renal Diseases (Renal Failure in press).

    Google Scholar 

  170. Nouwen EJ, Dauwe S, De Broe ME. EGF and TGF — are differentially localized along distal nephron segments in the adult and fetal human monkey. J Am Soc Nephrol 1993; 4(3): 472.

    Google Scholar 

  171. Kennedy WA II, Buttyan R, Sawczuk IS. Epidermal growth factor (EGF) suppresses renal tubular apoptosis following ureteral obstruction. J Am Soc Nephrol 1993; 4(3): 738.

    Google Scholar 

  172. Safirstein R, Zelent AZ, Price PM. Reduced renal prepro-epidermal growth factor mRNA and decreased EGF excrtetion in ARF. Kidney Int 1989; 36: 810–815.

    CAS  PubMed  Google Scholar 

  173. Verstrepen WA, Nouwen El, Yue XS, De Broe ME. Altered growth factor expression during toxic proximal tubular necrosis and regeneration. Kidney Int 1993; 43: 1267–1279.

    CAS  PubMed  Google Scholar 

  174. Joh T, Itoh M, Katsumi K, Yokayama Y, Takeuchi T, Kato T, Wada Y, Ranaka R. Physiological concentrations of human epidermal growth factor in biological fluids: use of a sensitive enzyme immunoassay. Clin Chim Acta 1986; 158: 81–90.

    Article  CAS  PubMed  Google Scholar 

  175. Moel DI, Safirstein RL, Sachs HK, Agrawal R. Epidermal growth factor (EGF) excretion 17–23 years after chelation therapy for childhood plumbism. J Am Soc Nephrol 1993; 4(3): 321.

    Google Scholar 

  176. Mattila A-L, Pasternack A, Viinikka L, Perheentupa J. Subnormal concentration of urinary epidermal growth factor in patients with kidney disease. J Clin Endocrinol Metab 1986; 62: 1180–1183.

    CAS  PubMed  Google Scholar 

  177. Han YKM, D’Ercole AJ, Lund PK. Cellular localization of somatomedin (insulin-like growth factor) messenger RNA in the human fetus. Science 1987; 236: 193–197.

    CAS  PubMed  Google Scholar 

  178. El Nahas AM, Sayed-Ahmed N. Insulin-like growth factor I and the kidney: friend or foe? Exp Nephrol 1993; 1: 205–17.

    PubMed  Google Scholar 

  179. Bruijn JA, Roos A, de Geus B, de Heer E. Transforming growth factor-β and the glomerular extracellular matrix in renal pathology. J Lab Clin Med 1994; 123: 34–47.

    CAS  PubMed  Google Scholar 

  180. Johnson RJ, Floege J, Causer WG, Alpers CE. Role of platelet-derived growth factors in glomerular disease. J Am Soc Nephrol 1993; 4: 119–128.

    CAS  PubMed  Google Scholar 

  181. Gesualdo L, Raniere E, Pannarale G, DiPaolo S, Schena P. Patelet-derived growth factor and proliferative glomerulonephritis. Kidney Int 1993; 43(Suppl 39): S86–S89.

    CAS  Google Scholar 

  182. Abboud HE, Woodruff KA, Snyder SP, Bonewald LF. Polypeptide growth factors regulate the production of latent transforming growth factor B in human mesangial cells. J Am Soc Nephrol 1991; 2: 434.

    Google Scholar 

  183. Fellstrom B, Klareskog L, Heldin CH, Larsson E, Ronnstrand L, Terracio L, Tufveson G, Wahlberg J, Rubin Kelley YE. Plateletderived growth factor receptors in the kidney. Up-regulated expression in inflammation. Kidney Int 1989; 36: 1099–1102.

    CAS  PubMed  Google Scholar 

  184. Brigstock DR. The connective tissue growth factor/cystein-rich 61/nephroblastoma overexpression (CCN) family. Endocr Rev 1999; 20: 189–206.

    Article  CAS  PubMed  Google Scholar 

  185. Jedsadayanmata A, Chen CC, Kireeva ML, Lau LF, Lam SC. Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin apha(Iib)β(3). J Biol Chem 1999; 274: 24321–24327.

    Article  CAS  PubMed  Google Scholar 

  186. Muramatsu Y, Tsujie M, Kohda Y, Pham B, Perantoni AO, Zhao Hong, Sang-Kyung J, Yuen PST, Craig L, Hu X, Star RA: Early detection of cysteine rich protein 61 (CYR61, CCN1) in urine following renal ischemic reperfusion injury. Kidney Int 2002; 62: 1601–1610.

    Article  CAS  PubMed  Google Scholar 

  187. Bruggeman LA, Pellicoro JA, Horigan EA, Klotman PA. Thromboxane and prostacyclin differentialy regulate murine extracellular matrix gene expression. Kidney Int 1993; 43: 1219–1225.

    CAS  PubMed  Google Scholar 

  188. Remuzzi G, FitzGerald GA, Patrono G. Thromboxane synthesis and action within the kidney. Kidney Int 1992; 41: 1483–1493.

    CAS  PubMed  Google Scholar 

  189. Toto R, Siddhanta A, Manna S, Pramanik B, Falck JR, Capdevila J. Arachidonic acid epoxygenase: detection of epoxyeicosatrienoic acids (EETs) in human urine. Biochim Biophys Acta 1987; 919: 132–139.

    CAS  PubMed  Google Scholar 

  190. Donovan KL, Coles GA, Williams JD. An ELISA for the detection of type IV collagen in human urine—Application to patients with glomerulonephritis. Kidney Int 1994; 46: 1431–1437.

    CAS  PubMed  Google Scholar 

  191. Nerlich AG, Schleicher ED, Wiest I, Specks U, Timpl R. Immunohistochemical localization of collagen VI in diabetic glomeruli. Kidney Int 1994; 45: 1648–1656.

    CAS  PubMed  Google Scholar 

  192. Price RG. Taylor SA, Crutcher E. Assay of laminin fragments in the assessment of renal disease. Kidney Int 1994; 46(Suppl 47): S25–S28.

    Google Scholar 

  193. Quiros J. Gonzalez-Cabrero J, Herrero-Beaumont G, Egido J. Elevated plasma fibronectin levels in rats with immune and toxic glomerular disease. Renal Failure 1990; 12: 227–232.

    CAS  PubMed  Google Scholar 

  194. Yamaguchi Y. Mann DM. Ruoslahti E. Negative regulation of transforming growth factor-β by the proteoglycan decorin. Nature 1990; 346: 281–284.

    Article  CAS  PubMed  Google Scholar 

  195. Rabb HAA. Cell adhesion molecules and the kidney. Am J Kidney Dis 1994; 23: 155–166.

    CAS  PubMed  Google Scholar 

  196. Brady HR. Leukocyte adhesion molecules and kidney disease. Kidney Int 1994: 45: 1285–1300.

    CAS  PubMed  Google Scholar 

  197. Bosman FT. Integrins: cell adhesives and modulators of cell function. Histochem J 1993; 25: 469–477.

    Article  CAS  PubMed  Google Scholar 

  198. Ruoslahti E, Noble NA, Kagami S, Border WA. Integrins. Kidney Int 1994; 45(Suppl 44): S17–S22.

    Google Scholar 

  199. Burridge K, Fath K, Kelly T, Nuckolis B, Turner C. Foca adhesion: transmembrane junctions between the extracellular matrix and the cytoskeleton. Ann Rev Cell BioI 1988; 4: 487–525.

    CAS  Google Scholar 

  200. Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV. Antibody to intercellular adhesion molecule I protects the kidney against ischemic injury. Proc Natl Acad Sci 1994; 91: 812–816.

    CAS  PubMed  Google Scholar 

  201. Simon EE. Potential role of integrins in acute renal failure. Nephrol Dial Transplant 1994; 9(Suppl 4): 26–33.

    PubMed  Google Scholar 

  202. Rothlein R, Mainolfi EA. Czajkowski M, Marlin SD. A form of circulating ICAM-1 in human serum. J Immunol 1991; 147: 3788–3793.

    CAS  PubMed  Google Scholar 

  203. Seron D, Cameron JS, Haskard DO. Expression of VCAM-1 in the normal and diseased kidney. Nephrol Dial Transplant 1991; 6: 917–922.

    CAS  PubMed  Google Scholar 

  204. Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL, Sanicola M. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 1998; 273: 4135–4142.

    Article  CAS  PubMed  Google Scholar 

  205. Han WK, Bailey V, Abichandami R, Thadhani RI, Ichimura T, Bonventre JV: Kidney injury molecule-1 (KIM-1) is a new biomarker for human renal proximal tubule injury. J Am Soc Nephrol 2000; 11: 129A.

    Google Scholar 

  206. Mutti A. Lucertini S, Valcavi P. Urinary excretion of brush-border antigen revealed by monoclonal antibody: early indicator of toxic nephropathy. Lancet 1985; 2: 914–917.

    CAS  PubMed  Google Scholar 

  207. Coudrier E, Kerjaschki D, Louvard D. Cytosheletal organization and sub membranous interactions in intestinal and renal brush borders. Kidney Int 1988; 34: 309–320.

    CAS  PubMed  Google Scholar 

  208. Gandhi CR, Berkowitz DE. Watkis D. Endothelins: biochemistry and pathophysiologic actions. Anesthesiology 1994; 80: 892–905.

    CAS  PubMed  Google Scholar 

  209. Simonson MS, Wann S, Mene P, Dubyak M, Kester Y, Nakazato Y, Sedor JR, Dunn MJ. Endothelin stimulates phospholipase C, Na/H exchange, c-fos expression and mitogenesis in rat mesangial cells. J Clin Invest 1989; 83: 708–712.

    CAS  PubMed  Google Scholar 

  210. Ohta K, Hirata Y, Shichiri M, Kanno K, Emori T, Tomita K, Marumo F. Urinary excretion of endothelin-1 in normal subjects and patients with renal disease. Kidney Int 1991; 39: 307–311.

    CAS  PubMed  Google Scholar 

  211. Kon V, Sugiura M, Inagami T, Harvie BR, Ichikawa I, Hoover RL. Role of endothelin in cyclosporine-induced glomerular dysfunction. Kidney Int 1990; 37: 1487–1491.

    CAS  PubMed  Google Scholar 

  212. Ohta K, Hirata Y, Shichiri M, Ichioka M, Kubota T, Marumo F. Cisplatin-induced urinary endothelin excretion. JAMA 1991; 265: 1391–1392.

    Article  CAS  PubMed  Google Scholar 

  213. Abassi ZA, Klein H, Golomb E, Keiser HR. Urinary endothelin: a possible biological marker of renal damage. Am J Hypertens 1993; 6(12): 1046–1054.

    CAS  PubMed  Google Scholar 

  214. Dvergsten J, Manivel JC, Correa-Rotter R, Rosenberg ME. Expression of clusterin in human renal diseases. Kidney Int 1994; 45(3): 828–835.

    CAS  PubMed  Google Scholar 

  215. Rulitzky WK, Schlegel PN. Wu D, Cheng CY, Chen C-LC, Li PS, Goldstein M, Reidenberg M, Bardin CW. Measurement of urinary clusterin as an index of nephrotoxicity. Proc Soc Exp Biol Med 1992; 199: 93–96.

    Google Scholar 

  216. Lovis C, Mach F, Donati YRA, Bonventure JV, Polla BS. Heat shock proteins and the kidney. Renal Failure 1994; 16: 179–192.

    CAS  PubMed  Google Scholar 

  217. Nguyen TK, Obatomi DK, Bach PH. Increased urinary uronic acid excretion in experimentally-induced renal papillary necrosis in rats. Renal Failure 2001; 23: 31–42.

    CAS  PubMed  Google Scholar 

  218. Eti S, Cheng CY, Marshall A. Reidenberg MM. Urinary clusterin in chronic nephrotoxicity in the rat. Proc Soc Exp Biol Med 1993; 202: 487–490.

    CAS  PubMed  Google Scholar 

  219. Videen JS, Ross BD. Proton nuclear magnetic resonance urinalysis: coming of age. Kidney Int 1994; 46(suppl 47): S122–S128.

    Google Scholar 

  220. Anthony ML, Sweatman BC, Beddell CR, Lindoon JC, Nicholson JK. Pattern recognition classification of the site of nephrotoxicity based on metabolic data from proton nuclear magnetic resonance spectra of urine. Mol Pharmacol 1994; 46: 199–211.

    CAS  PubMed  Google Scholar 

  221. Bueler MR, Wiederkehr F, Vonderschmitt DJ. Electrophoretic, chromotographic and immunological studies of human urinary proteins. Electrophoresis 1995; 16: 124–134.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Finn, W.F., Porter, G.A. (2003). Urinary biomarkers and nephrotoxicity. In: de Broe, M.E., Porter, G.A., Bennett, W.M., Verpooten, G.A. (eds) Clinical Nephrotoxins. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2586-6_33

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2586-6_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1277-8

  • Online ISBN: 978-1-4020-2586-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics