Skip to main content

Influence Functional for Decoherence of Interacting Electrons in Disordered Conductors

  • Chapter
Fundamental Problems of Mesoscopic Physics

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 154))

Abstract

We have rederived the controversial influence functional approach of Golubev and Zaikin (GZ) for interacting electrons in disordered metals in a way that allows us to show its equivalence, before disorder averaging, to diagrammatic Keldysh perturbation theory. By representing a certain Pauli factor \( (\tilde \delta - 2\tilde \rho ^0 ) \) occuring in GZ’s effective action in the frequency domain (instead of the time domain, as GZ do), we also achieve a more accurate treatment of recoil effects. With this change, GZ’s approach reproduces, in a remarkably simple way, the standard, generally accepted result for the decoherence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. S. Golubev and A. D. Zaikin, Phys. Rev. Lett. 81, 1074, (1998).

    Article  CAS  ADS  Google Scholar 

  2. D. S. Golubev and A. D. Zaikin, Phys. Rev. B 59, 9195, (1999).

    Article  CAS  ADS  Google Scholar 

  3. D. S. Golubev and A. D. Zaikin, Phys. Rev. B 62, 114061 (2000).

    Article  Google Scholar 

  4. D. S. Golubev, A. D. Zaikin, and G. Schön, J. Low Temp. Phys. 126, 1355 (2002) [cond-mat/0110495].

    Article  CAS  Google Scholar 

  5. D. S. Golubev and A. D. Zaikin, cond-mat/0208140.

    Google Scholar 

  6. D. S. Golubev, C. P. Herrero, Andrei D. Zaikin, cond-mat/0205549.

    Google Scholar 

  7. P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78, 3366 (1997); Fortschr. Phys. 46, 779 (1998).

    Article  CAS  ADS  Google Scholar 

  8. Most relevant references can be found in Ref. A. D. Zaikin, and G. Schön, J. Low Temp. Phys. 126, 1355 (2002) [cond-mat/0110495] [4], which gives a useful overview of the controversy from GZ’s point of view.

    Article  CAS  Google Scholar 

  9. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitskii, J. Phys. C 15, 7367 (1982).

    Article  CAS  ADS  Google Scholar 

  10. K. A. Eriksen and P. Hedegard, cond-mat/9810297; GZ replied in condmat/9810368.

    Google Scholar 

  11. M. Vavilov and V. Ambegaokar, cond-mat/9902127.

    Google Scholar 

  12. T.R. Kirkpatrick, D. Belitz, cond-mat/0112063, cond-mat/0111398.

    Google Scholar 

  13. Y. Imry, cond-mat/0202044.

    Google Scholar 

  14. J. von Delft, J. Phys. Soc. Jpn. Vol. 72 (2003) Suppl. A pp. 24–29 [cond-mat/0210644].

    Google Scholar 

  15. F. Marquardt, cond-mat/0207692 (unpublished).

    Google Scholar 

  16. I. Aleiner, B. L. Altshuler, and M. E. Gershenzon, Waves and Random Media 9, 201 (1999) [cond-mat/9808053]; Phys. Rev. Lett. 82, 3190 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. I. L. Aleiner, B. L. Altshuler, M. G. Vavilov, J. Low Temp. Phys. 126, 1377 (2002) [cond-mat/0110545].

    Article  CAS  Google Scholar 

  18. I. L. Aleiner, B. L. Altshuler, M. G. Vavilov, cond-mat/0208264.

    Google Scholar 

  19. F. Marquardt, Jan von Delft, R. Smith and V. Ambegaokar, to be published.

    Google Scholar 

  20. S. Chakravarty and A. Schmid, Phys. Rep. 140, 193 (1983).

    Article  ADS  Google Scholar 

  21. H. Fukuyama and E. Abrahams, Phys. Ref. B 27, 5976 (1983).

    Article  ADS  Google Scholar 

  22. The expressions for \( \tilde \sum \) that we published in [14], Eqs. (A.16), contain incorrect signs and missing factors of \( \tfrac{1} {2} \), and should be replaced by Eqs. (8.A.10) of this paper.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

von Delft, J. (2004). Influence Functional for Decoherence of Interacting Electrons in Disordered Conductors. In: Lerner, I.V., Altshuler, B.L., Gefen, Y. (eds) Fundamental Problems of Mesoscopic Physics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 154. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2193-3_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2193-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2192-3

  • Online ISBN: 978-1-4020-2193-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics