Skip to main content

Quantum Coherent Transport and Superconductivity in Carbon Nanotubes

  • Chapter
  • 333 Accesses

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 154))

Abstract

We report low temperature transport measurements on suspended single walled carbon nanotubes (both individual tubes and ropes). The technique we have developed, where tubes are soldered on low resistive metallic contacts across a slit, enables a good characterization of the samples by transmission electron microscopy. It is possible to obtain individual tubes with a room temperature resistance smaller than 40 kΩ, which remain metallic down to very low temperatures.

When the contact pads are superconducting, nanotubes exhibit proximity induced superconductivity with surprisingly large values of supercurrent. We have also recently observed intrinsic superconductivity in ropes of single walled carbon nanotubes connected to normal contacts, when the distance between the normal electrodes is large enough, since otherwise superconductivity is destroyed by (inverse) proximity effect. These experiments indicate the presence of attractive interactions in carbon nanotubes which overcome Coulomb repulsive interactions at low temperature, and enables investigation of superconductivity in a 1D limit never explored before.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Jéerome and H.J. Schulz, Adv. Phys. 31, 299, (1982).

    Article  CAS  ADS  Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996).

    Google Scholar 

  3. R. Egger, A. Gogolin, Phys. Rev. Lett. 79, 5082 (1997). R. Egger, Phys. Rev. Lett. 83, 5547 (1999).

    Article  CAS  ADS  Google Scholar 

  4. C. Kane, L. Balents, M. P. Fisher, Phys. Rev. Lett 79, 5086 (1997).

    Article  CAS  ADS  Google Scholar 

  5. Marc Bockrath, David H. Cobden, Jia Lu, Andrew G. Rinzler, Richard E. Smalley, Leon Balents, Paul L. McEuen, Nature 397, 598 (1999).

    Article  CAS  ADS  Google Scholar 

  6. H. Grabert and M. H. Devoret (eds), Single Charge Tunneling (Plenum, New-York, 1992); S. J. Tans, M. H. Devoret, H. J. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, C. Dekker, Nature 386, 474 (1997).

    Google Scholar 

  7. A. Yu. Kasumov, I.I. Khodos, P.M. Ajayan, C. Colliex, Europhys. Lett. 34, 429 (1996); A.Yu. Kasumov et al., Europhys. Lett. 43, 89 (1998).

    Article  CAS  ADS  Google Scholar 

  8. J. Nygard, D.H. Cobden and P.E. Lindelof, Nature 408, 342 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Zhen Yao, Charles L Kane, and Cees Decker, Phys. Rev. Lett. 84, 2941 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  10. I. Safi and H. J. Schulz, Phys. Rev. B52, R17040 (1995).

    ADS  Google Scholar 

  11. G. Deutscher and P.G. de Gennes in Superconductivity (Ed. R.D. Parks, Marcel Dekker Inc., 1969).

    Google Scholar 

  12. H. Courtois, Ph. Gandit, and B. Panetier, Phys. Rev. B52, 1162 (1995).

    ADS  Google Scholar 

  13. For a review of supercurrents through superconducting junctions see: K. Likharev, Rev. Mod. Phys., 51, 101 (1979).

    Google Scholar 

  14. P. Dubos, H. Courtois, B. Pannetier, F. K. Wilhelm, A. D. Zaikin, and G. Schöon, Phys. Rev. B 63, 064502 (2001).

    ADS  Google Scholar 

  15. A. Yu. Kasumov, R. Deblock, M. Kociak, B. Reulet, H. Bouchiat, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, C. Journet, and M. Burghard, Science 284, 1508 (1999).

    Article  CAS  ADS  PubMed  Google Scholar 

  16. J. Meyer, G. V. Minnigerode, Physics Letters, 38A, 7, 529 (1972).

    ADS  Google Scholar 

  17. R. Fazio, F. W. J. Hekking and A.A. Odintsov, Phys. Rev. B 53, 6653 (1995).

    ADS  Google Scholar 

  18. D. Maslov, M. Stone, P.M. Goldbart, D. Loss, Phys. Rev. B 53, 1548 (1995).

    ADS  Google Scholar 

  19. I. Affleck, J.B. Caux and A. Zagoskin, Phys. Rev. B 62, 1433 (2000).

    ADS  Google Scholar 

  20. J. Gonzalez, Phys. Rev. Lett. 87, 136401 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  21. D. J. Thouless, Phys. Rev. Lett. 39, 1967 (1977).

    Article  ADS  Google Scholar 

  22. J. Romijn, T. M. Klapwijk, M. J. Renne, and J.E. Mooij, Phys. Rev. B 26, 3648 (1982).

    ADS  Google Scholar 

  23. N. Giordano, Phys. Rev. B 50, 160 (1991).

    ADS  Google Scholar 

  24. F. Sharifi, A. V. Herzog, and R. C. Dynes Phys. Rev. Lett. 71, 428–431 (1993); P. Xiong, A. V. Herzog, and R. C. Dynes, Phys. Rev. Lett. 78, 927–930 (1997).

    Article  CAS  ADS  PubMed  Google Scholar 

  25. C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and M. Tinkham, Phys. Rev. Lett. 87, 217003 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Tinkham, M., Introduction to superconductivity, McGraw-Hill, 2d Ed. (Singapore, 1996).

    Google Scholar 

  27. W. Belzig, C. Bruder and G. Schöon, Phys. Rev. B 54, 9443 (1996).

    ADS  Google Scholar 

  28. P. Roche, M. Kociak, S. Guéeron, A. Kasumov, B. Reulet and H. Bouchiat, Eur. Phys. J. B. 28, 217–222 (2002).

    Article  CAS  ADS  Google Scholar 

  29. J. Gonzalez, Phys. Rev. Lett. 88, 076403 (2002); Phys. Rev. B 67, 014528 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  30. R. A. Smith, B. S. Handy, and V. Ambegaokar, Phys. Rev. B 63, 094513 (2001).

    ADS  Google Scholar 

  31. V. Ambegaokar and A. Baratoff, Phys. Rev. Lett. 10, 486 (1970).

    Article  ADS  Google Scholar 

  32. R. Meservey, P.M. Tedrow, Phys. Rep. 238 (4), 173 (1994).

    Article  ADS  Google Scholar 

  33. A.M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    Article  ADS  Google Scholar 

  34. B.S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).

    Article  CAS  ADS  Google Scholar 

  35. Z. K. Tang, Lingyun Zhang, N. Wang, X. X. Zhang, G. H. Wen, G. D. Li, J. N. Wang, C. T. Chan, and Ping Sheng, Science 292, 2462 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  36. N. B. Hannay, T. H. Geballe, B. T. Matthias, K. Andres, P. Schmidt, and D. MacNair, Phys. Rev. Lett. 14, 225 (1965).

    Article  CAS  ADS  Google Scholar 

  37. O. Gunnarsson, Rev. Mod. Phys. 69, 575 (1997).

    Article  CAS  ADS  Google Scholar 

  38. Liesbeth C. Venema, Jeroen W. G. Wildöer, Jorg W. Janssen, Sander J. Tans, Hinne L. J. Temminck Tuinstra, Leo P. Kouwenhoven, and Cees Dekker, Science 283, 52 (1999).

    Article  CAS  ADS  PubMed  Google Scholar 

  39. A. A. Odintsov, Phys. Rev. Lett. 85, 150 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  40. H.J. Schulz, Phys. Rev. B 53, R2959 (1996).

    ADS  Google Scholar 

  41. A. Séedéeki, L. G. Caron, and C. Bourbonnais, Phys. Rev. B 65, 140515 (2002).

    Google Scholar 

  42. A. de Martino and R. Egger (to be published).

    Google Scholar 

  43. D. Loss and T. Martin, Phys. Rev. B 50, 12160 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ferrier, M. et al. (2004). Quantum Coherent Transport and Superconductivity in Carbon Nanotubes. In: Lerner, I.V., Altshuler, B.L., Gefen, Y. (eds) Fundamental Problems of Mesoscopic Physics. NATO Science Series II: Mathematics, Physics and Chemistry, vol 154. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2193-3_13

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2193-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2192-3

  • Online ISBN: 978-1-4020-2193-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics