Skip to main content

Spontaneous Regression of Neoplasms: New Possibilities for Immunotherapy

  • Chapter
  • 103 Accesses

Part of the book series: Cancer Growth and Progression ((CAGP,volume 17))

Abstract

In mammalian cells, neoplastic transformation is directly associated with the expression of oncogenes, loss or simple inactivation of the function of tumor suppressor genes, and the production of certain growth factors. Genes for suppression of the development of the neoplastic cellular IP, as well as inhibitory growth factors have regulatory functions within the normal processes of cell division and differentiation. Telomerase (a ribonucleoprotein polymerase) activation is frequently detected in various neoplasms. Telomerase activation is regarded as essential for cell immortalization and its inhibition may result in spontaneous regression (SR) of neoplasms.

SR of neoplasms occurs when the malignant tissue mass partially or completely disappears without any treatment or as a result of a therapy considered inadequate to influence systemic neoplastic growth. This definition makes it clear that the term SR applies to neoplasms in which the overall malignant disease is not necessarily cured and to cases where the regression may not be complete or permanent.

A number of possible mechanisms of SR are reviewed, with the understanding that no single mechanism can completely account for this phenomenon. The application of the newest immunological, molecular biological and genetic insights for more individualized and adequate antineoplastic immunotherapy (alternative biotherapy) is also discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marshall C: Tumor suppressor genes. Cell 64: 313–326, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Bodey B, Kaiser HE, Goldfarb RH: Immunophenotypically varied cell subpopulations in primary and metastatic human melanomas. Monoclonal antibodies for diagnosis, detection of neoplastic progression and receptor directed immunotherapy. Anticancer Res 16: 517–531, 1996.

    PubMed  CAS  Google Scholar 

  3. Bodey B, Groger AM, Bodey B Jr, Siegel SE, Kaiser HE: Immunocytochemical detection of p53 protein overexpression in primary human osteosarcomas. Anticancer Res 17: 493–498, 1997.

    PubMed  CAS  Google Scholar 

  4. Hedrick L, Cho KR, Fearon ER, Wu T-C, Kinzler KW, Vogelstein B: The DCC gene product in cellular differentiation and colorectal tumorigenesis. Genes Dev 8: 1174–1183, 1994.

    PubMed  CAS  Google Scholar 

  5. Perry ME, Levine AJ: P53 and mdm-2: interactions between tumor suppressor gene and oncogene products. Mount Sinai J Med 61: 291–299, 1994.

    CAS  Google Scholar 

  6. Talib VH, Pandey J, Dhupia JS: Molecular markers in cancer diagnosis. Ind J Pathol Microbiol 38: 1–3, 1995.

    CAS  Google Scholar 

  7. Jacobson DR, Fishman CL, Mills NE: Molecular genetic tumor markers in the early diagnosis and screening of nonsmall-cell lung cancer. Annals Oncol 6: S3–S8, 1995.

    Google Scholar 

  8. Bugert P, Kovacs G: Molecular differential diagnosis of renal cell carcinomas by microsatellite analysis. Am J Pathol 149: 2081–2088, 1996.

    PubMed  CAS  Google Scholar 

  9. Dietzmann K, von Bossanyi P, Sallaba J, Kirches E, Synowitz HJ, Warich-Kirches M: Immunohistochemically detectable p53 and mdm-2 oncoprotein expression in astrocytic gliomas and their correlation to cell proliferation. General Diagn Pathol 141: 339–344, 1996.

    CAS  Google Scholar 

  10. Volpe JP: Genetic instability of cancer: Why a metastatic tumor is unstable and a benign tumor is stable. Cancer Genet Cytogenet 34: 124–134, 1988.

    Article  Google Scholar 

  11. Bodey B, Zeltzer PM, Saldivar V, Kemshead J: Immunophenotyping of childhood astrocytomas with a library of monoclonal antibodies. Int J Cancer 45: 1079–1087, 1990.

    PubMed  CAS  Google Scholar 

  12. Bodey B, Bodey B Jr, Groger AM, Siegel SE, Kaiser HE: Clinical and prognostic significance of Ki-67 and proliferating cell nuclear antigen expression in childhood primitive neuroectodermal brain tumors. Anticancer Res 17: 189–196, 1997.

    PubMed  CAS  Google Scholar 

  13. Bodey B, Bodey B Jr, Groger AM, Siegel SE, Kaiser HE: Nm23/nucleoside diphosphate (NDP) kinase expression in human malignant melanomas. Significance and implications in tumor biology. Anticancer Res 17: 505–512, 1997.

    PubMed  CAS  Google Scholar 

  14. Vogelstein B, Fearon E, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AM, Bos JL: Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525–532, 1988.

    Article  PubMed  CAS  Google Scholar 

  15. Sirica AE: Multistage carcinogenesis in cellular and molecular pathogenesis. Philadelphia, Lippincott-Raven, pp 283–320, 1996.

    Google Scholar 

  16. Pollard M, Luckert PH: Phenobarbital promotes multistage pulmonary carcinogenesis in MNU-inoculated L-W rats. In Vivo 11: 55–60, 1997.

    PubMed  CAS  Google Scholar 

  17. Nicolson GL: Growth mechanism and cancer progression. Hosp Prac 28: 43–53, 1993.

    CAS  Google Scholar 

  18. Parsons DF: Some tumor cell protein kinases activated by receptors as markers, including elastin receptors. Cancer Invest 13: 629–636, 1995.

    PubMed  CAS  Google Scholar 

  19. Papac RJ: Spontaneous regression of cancer. Cancer Treat Rev 22: 395–423, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Boyd W: The Spontaneous Regression of Cancer. Springfield, Charles C Thomas Publ, 1966.

    Google Scholar 

  21. Meares M: Regression of cancer after intensive meditation. Med J Austr 5: 184, 1976.

    Google Scholar 

  22. Meares M: Regression of osteogenic sarcoma metastases associated with intensive meditation. Med J Austr 2: 433, 1978.

    CAS  Google Scholar 

  23. Bennett WH: Some peculiarities in the behavior of certain malignant and innocent growths. Lancet 1: 3–7, 1899.

    Google Scholar 

  24. Rhodenberg GL: Fluctuations in the growth rate of malignant tumors in man, with special reference to spontaneous regression. J Cancer Res 3: 193–221, 1918.

    Google Scholar 

  25. Cushing H, Wollbach SB: The transformation of a malignant paravertebral sympathicoblastoma into a benign ganglioneuroma. Am J Pathol 3: 203–216, 1927.

    PubMed  CAS  Google Scholar 

  26. Bumpus HC Jr: The apparent disappearance of pulmonary metastasis in a case of hypernephroma following nephrectomy. J Urol 20: 185–191, 1928.

    Google Scholar 

  27. Everson TC, Cole WH: Spontaneous Regression of Cancer. Philadelphia, WB Saunders, pp 1–1187, 1966.

    Google Scholar 

  28. Challis GB, Stam HJ: The spontaneous regression of cancer. A review of cases from 1900 to 1987. Acta Oncol 29: 545–550, 1990.

    PubMed  CAS  Google Scholar 

  29. O’Regan B, Hirschberg C: Spontaneous Remission. An Annotated Bibliography. Sausalito (CA, USA), Institute of Noetic Sciences, 1993.

    Google Scholar 

  30. Osler W: The medical aspects of carcinoma of the breast, with a note on the spontaneous disappearance of secondary growths. Am Med 17–19: 63–66, 1901.

    Google Scholar 

  31. Rae MV: Spontaneous regression of hypernephroma. Am J Cancer 24: 839–841, 1935.

    Google Scholar 

  32. Cole WH: Spontaneous regression of cancer. The metabolic triumph of the host? Ann NY Acad Sci 230: 111–141, 1974.

    PubMed  CAS  Google Scholar 

  33. Papac RJ: Spontaneous regression of cancer. Conn Med 54: 179–182, 1990.

    PubMed  CAS  Google Scholar 

  34. Kaiser HE: A biological approach to an understanding of regression. In: Cancer Growth and Progression (series ed Kaiser HE), vol 4: Influence of Tumor Development of the Host (volume ed Herberman RB), Kluwer Academic Publishers, Dordrecht, The Netherlands, p 42, 1989.

    Google Scholar 

  35. Kaiser HE: Biological viewpoints of neoplastic regression. In Vivo 8: 155–165, 1994.

    PubMed  CAS  Google Scholar 

  36. Cooper KR: Regression of neoplasms in invertebrates with special emphasis on mollusca. In: Cancer Growth and Progression (Kaiser HE, series ed). Vol 4 “Influence of Tumor Development of the Host” (Herberman RB, vol ed), Dordrecht, Netherlands, Kluwer Academic Publishers, 1989, pp 30–36.

    Google Scholar 

  37. Meins F Jr: Tumor reversal and tumor suppression in plants. In: Cancer Growth and Progression (Kaiser HE, series ed). Vol 4 “Influence of Tumor Development of the Host” (Herberman RB, vol ed), Dordrecht, Netherlands, Kluwer Academic Publishers, 1989, pp 37–41.

    Google Scholar 

  38. Xylander WER: Immune defense in arthropods — How chelicerates, crustaceans, insects and myriapods protect themselves against disease. Spiegel der Forschung 11: 27–30, 1994.

    Google Scholar 

  39. Kruse J: Spontaneous remission of breast cancer. Ugeskr Laeger 161: 4001–4004, 1999.

    Google Scholar 

  40. Sharma DN, Mohanti BK, Shukla NK, Rath GK: Spontaneous regression of carcinoma of the stomach. Clin Oncol (R Coll Radiol) 12: 335–336, 2000.

    CAS  Google Scholar 

  41. Murai Y, Kobayashi S, Mizunari T, Ohaki Y, Adachi K, Teramoto A: Spontaneous regression of a germinoma in the pineal body after placement of a ventriculoperitoneal shunt. J Neurosurg 93: 884–886, 2000.

    PubMed  CAS  Google Scholar 

  42. Okada S, Abo T: Spontaneous regression of hepatocellular carcinoma. J Gastroenterol Hepatol 15: 965–966, 2000. Comment on: J Gastroenterol Hepatol 15: 1079–1086, 2000.

    PubMed  CAS  Google Scholar 

  43. Uenishi T, Hirohashi K, Tanaka H, Ikebe T, Kinoshita H: Spontaneous regression of a large hepatocellular carcinoma with portal vein tumor thrombi: report of a case. Surg Today 30: 82–85, 2000.

    Article  PubMed  CAS  Google Scholar 

  44. Gallucci M, Catalucci A, Scheithauer BW, Forbes GS: Spontaneous involution of pilocytic astrocytoma in a patient without neurofibromatosis type 1: case report. Radiology 214: 223–226, 2000.

    PubMed  CAS  Google Scholar 

  45. Bariol C, Field A, Vickers CR, Ward R: Regression of gastric T cell lymphoma with eradication of Helicobacter pylon. Gut 48: 269–271, 2001.

    Article  PubMed  CAS  Google Scholar 

  46. Le Meur Y, Pontoizeau-Potelune N, Jaccard A, Paraf F, Leroux-Robert C: Regression of a gastric lymphoma of mucosa-associated lymphoid tissue after eradication of Helicobacter pylori in a kidney graft recipient. Am J Med 107: 530, 1999.

    PubMed  Google Scholar 

  47. Weintraub M, Kaplinsky C, Amariglio N, Rosner E, Brok-Simoni F, Rechavi G: Spontaneous regression of congenital leukaemia with an 8;16 translocation. Br J Haematol 111: 641–643, 2000.

    Article  PubMed  CAS  Google Scholar 

  48. Choudhari KA, McLorinan GC, Byrnes DP: Spontaneous regression of a primary cerebral tumour following postoperative middle cerebral artery territory infarction. Br J Neurosurg 15: 177–179; discussion 179–180, 2001.

    PubMed  CAS  Google Scholar 

  49. Parker R, Lanvin D, Gilks B, Miller D: Spontaneous regression of stage IV clear cell carcinoma of the endometrium in a patient with essential thrombocytosis. Gynecol Oncol 82: 395–399, 2001.

    Article  PubMed  CAS  Google Scholar 

  50. Printz C. Spontaneous regression of melanoma may offer insight into cancer immunology. J Natl Cancer Inst 93: 1047–1048, 2001.

    Article  PubMed  CAS  Google Scholar 

  51. Wells H: Chemical Pathology. Philadelphia, WB Saunders, 1925.

    Google Scholar 

  52. Glumac G, Mates A, Eidinger D: The heterocytotoxicity of human serum. III. Studies of the serum levels and distribution of activity in human populations. Clin Exp Immunol 26: 601–608, 1976.

    PubMed  CAS  Google Scholar 

  53. Hellstrom KE, Hellstrom I: Spontaneous tumor regression: Possible relationships to in vitro parameters of tumor immunity. Natl Cancer Inst Monogr 44: 131–134, 1976.

    PubMed  CAS  Google Scholar 

  54. Bolande RP, Todd EW: The cytotoxic action of normal human serum on certain cells propagated in vitro. AMA Arch Pathol 66: 720–732, 1958.

    PubMed  CAS  Google Scholar 

  55. Bolande RP: Spontaneous regression of neuroblastoma: an experimental approach. Ped Pathol 10: 195–206, 1990.

    Article  CAS  Google Scholar 

  56. Gross J, Simon E, Szwarc-Bilotynski L, Durst A, Pfefferman R, Polishuk Z: Complement-dependent lysis of Ehrlich ascites cells by human serum (ascitolysin) is lowered in cancer patients and raised in pregnant women. Eur J Cancer Clin Oncol 22: 13–19, 1986.

    Article  PubMed  CAS  Google Scholar 

  57. Bolande RP, Arnold JL, Mayer DC: Natural cytotoxicity of human serum. A natural IgM “antibody” sensitizes transformed murine cells to the lytic action of complement. Pathol Immunopathol Res 8: 46–60, 1989.

    Article  PubMed  CAS  Google Scholar 

  58. Evans AE, Gerson J, Schnaufer L: Spontaneous remission of neuroblastoma. Natl Cancer Inst Monogr 44: 49–54, 1976.

    PubMed  CAS  Google Scholar 

  59. Cheung NK, Saarinen UM, Neely JE, Landmeier B, Donovan D, Coccia PF: Monoclonal antibodies to a glycolipid antigen of human neuroblastoma cells. Cancer Res 45: 2642–2649, 1985.

    PubMed  CAS  Google Scholar 

  60. Saarinen UM, Coccia PF, Gerson SL, Peeley R, Cheung NK: Eradication of neuroblastoma cells in vitro by monoclonal antibodies and complement: Method for purging autologous bone marrow. Cancer Res 45: 5969–5975, 1985.

    PubMed  CAS  Google Scholar 

  61. Carlsen NLT: How frequent is spontaneous remission of neuroblastomas? Implications for screening. Br J Cancer 61: 441–446, 1990.

    PubMed  CAS  Google Scholar 

  62. Brodeur GM, Nakagawara A: Molecular basis of clinical heterogeneity in neuroblastoma. Am J Pediatr Hem Oncol 14: 111–116, 1992.

    CAS  Google Scholar 

  63. Tefany FJ, Barnetson RS, Halliday GM, McCarthy SW, McCarthy H: Immunocytochemical analysis of the cellular infiltrate in primary regressing and non-regressing malignant melanoma. J Invest Dermatol 97:197–202, 1991.

    Article  PubMed  CAS  Google Scholar 

  64. Baker HW: Biologic control of cancer. Arch Surg 121: 1237–1241, 1986.

    PubMed  CAS  Google Scholar 

  65. Penn I: Cancers complicating organ transplantation. N Engl J Med 323: 1767–1769, 1990.

    PubMed  CAS  Google Scholar 

  66. Horn L, Horn H: An immunologic approach to the treatment of cancer? Lancet 2: 466–469, 1971.

    PubMed  CAS  Google Scholar 

  67. Cole WH: Efforts to explain spontaneous regression of cancer. J Surg Oncol 17: 201–209, 1981.

    PubMed  CAS  Google Scholar 

  68. Rosenberg SA: Adoptive immunotherapy of cancer using lymphokine activated killer cells and recombinant interleukin-2. Important Adv Oncol pp: 55–91, 1986.

    Google Scholar 

  69. Sinkovics JG: Oncogenes and growth factors. CRC Critical Reviews in Immunol 8: 217–298, 1988.

    CAS  Google Scholar 

  70. Culliton BJ: Fighting cancer with designer cells. Science 244: 1430–1433, 1989.

    PubMed  CAS  Google Scholar 

  71. Hersey P: Cellular therapy. Curr Opinion Oncol 5: 1049–1054, 1993.

    CAS  Google Scholar 

  72. Rosenberg SA, Terry W: Passive immunotherapy of cancer in animals and man. Adv Cancer Res 25: 323–388, 1977.

    PubMed  CAS  Google Scholar 

  73. Rosenberg SA: Adoptive immunotherapy of cancer: accomplishments and prospects. Cancer Treat Rep 68: 233–255, 1984.

    PubMed  CAS  Google Scholar 

  74. Sondel PM, Hank JA, Kohler PC, Chen BP, Sosman J: “Lymphokine activated killing” as treatment for human cancer: clinical extrapolations from laboratory studies with interleukin-2 expanded leukocytes. Prog Clin Biol Res 288: 151–160, 1989.

    PubMed  CAS  Google Scholar 

  75. Katano M, Nagumo F, Kubota E, Yamamoto H, Matsuo T, Hisatsagu T, Tadano J: Autologous tumour-specific cytotoxic T cell clone established from tumour infiltrating lymphocytes (TIL) of malignant ascites in the absence of recombinant interleukin 2 (rIL-2): activation by autologous tumour cell alone. Biotherapy 6: 25–32, 1993.

    Article  PubMed  CAS  Google Scholar 

  76. Bodey B, Bodey B Jr, Siegel SE: Immunophenotypic characterization of infiltrating poly-and mononuclear cells in childhood brain tumors. Mod Pathol 8: 333–338, 1995.

    PubMed  CAS  Google Scholar 

  77. Bodey B, Bodey B Jr, Siegel SE, Luck JV, Kaiser HE: Immunophenotypic characterization of human primary and metastatic melanoma infiltrating autologous immunological effector cells. Anticancer Res 16: 3439–3446, 1996.

    PubMed  CAS  Google Scholar 

  78. Hawkins MJ: Interleukin-2 antitumor and effector cell response. Semin Oncol 20: 52–59, 1993.

    PubMed  CAS  Google Scholar 

  79. Maccali C, Mortarini R, Parmiani G, Anichini A: Multiple sub-sets of CD4+ and CD8+ cytotoxic T-cell clones directed to autologous human melanoma identified by cytokine profiles. Inter J Cancer 57: 56–62, 1994.

    Google Scholar 

  80. Shi L, Kam CM, Powers JC, Aebersold R, Greenberg AH: Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med 176: 1521–1529, 1992.

    Article  PubMed  CAS  Google Scholar 

  81. Nagata S, Golstein P: The Fas death factor. Science 267: 1449–1456, 1995.

    PubMed  CAS  Google Scholar 

  82. Khar A, Parshasaradhi BVV, Varalakshmi Ch, Ali MA, Kumari AL: Natural killer cells as the effector which mediates in vivo apoptosis in AK-5 tumor cells. Cell Immunol 177: 86–92, 1997.

    Article  PubMed  CAS  Google Scholar 

  83. Trinchieri G: Biology of natural killer cells. Adv Immunol 47: 187–376, 1989.

    PubMed  CAS  Google Scholar 

  84. Fesus L, Davies PJA, Piacentini M: Apoptosis: molecular mechanism in programmed cell death. Eur J Cell Biol 56: 170–177, 1991.

    PubMed  CAS  Google Scholar 

  85. Hoon DB, Bowker RJ, Cochran AJ: Suppressor cell activity in melanoma-draining lymph nodes. Cancer Res 47: 1529–1533, 1987.

    PubMed  CAS  Google Scholar 

  86. Shaw HM, McCarthy SW, McCarthy WH, Thompson JF, Milton GW: Thin regressing malignant melanoma: significance of concurrent regional lymph node metastases. Histopathology 15: 257–265, 1989.

    PubMed  CAS  Google Scholar 

  87. Restifo NP, Kawakami Y, Marincola F, Shamamian P, Taggarse A, Esquivel F, Rosenberg SA: Molecular mechanisms used by tumors to escape immune recognition: immunogenetherapy and the cell biology of major histocompatibility complex class I. J Immunother 14: 182–190, 1993.

    PubMed  CAS  Google Scholar 

  88. Schrier PI, Bernards R, Vaessen RTMJ, Houweling A, van der Eb AJ: Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature 305: 771–775, 1983.

    Article  PubMed  CAS  Google Scholar 

  89. Rooney CM, Rowe M, Wallace LE, Rickinson AB: Epstein-Barr virus positive Burkitt’s lymphoma cells not recognized by virus specific T-cell surveillance. Nature 317: 629–631, 1985.

    Article  PubMed  CAS  Google Scholar 

  90. Weber JS, Kay G, Tanaka K, Rosenberg SA: Immunotherapy of a murine tumor with interleukin-2: increased sensitivity after MHC class I gene transfection. J Exp Med 166: 1716–1722, 1987.

    Article  PubMed  CAS  Google Scholar 

  91. Tanaka K, Yoshioka T, Bieberich C, Jay G: Role of the major histocompatibility complex class I antigens in tumor growth and metastasis. Annu Rev Immunol 6: 359–380, 1988.

    Article  PubMed  CAS  Google Scholar 

  92. Vujanovic NL, Nagashima S, Herberman RB, Whiteside TL: Nonsecretory apoptotic killing by human NK cells. J Immunol 157: 1117–1126, 1996.

    PubMed  CAS  Google Scholar 

  93. Vujanovic NL, Basse P, Herberman RB, Whiteside TL: Antitumor functions of natural killer cells and control of metastases. Methods 9: 394–408, 1996.

    Article  PubMed  CAS  Google Scholar 

  94. Kradin RL, Xia W, Pike M, Byers HR, Pinto C: Interleukin-2 promotes the motility of dendritic cells and their accumulation in lung and skin. Pathobiology 64: 180–186, 1996.

    PubMed  CAS  Google Scholar 

  95. Bodey B, Bodey B Jr, Kaiser HE: Dendritic type, accessory cells within the mammalian thymic microenvironment. Antigen presentation in the dendritic neuro-endocrine-immune cellular network. In Vivo 11: 351–370, 1997.

    PubMed  CAS  Google Scholar 

  96. Underwood JC: Lymphoreticular infiltration in human tumours: prognostic and biological implications: a review. Br J Cancer 30: 538–548, 1974.

    PubMed  CAS  Google Scholar 

  97. Ioachim HL: The stromal reaction of tumors: an expression of immune surveillance. J Natl Cancer Inst 57: 465–475, 1976.

    PubMed  CAS  Google Scholar 

  98. Ruiter DJ, Bhan AK, Harrist TJ, Sober AJ, Mihm MC Jr: Major histocompatibility antigens and mononuclear inflammatory infiltrate in benign nevomelanocytic proliferations and malignant melanoma. J Immunol 129: 2808–2815, 1982.

    PubMed  CAS  Google Scholar 

  99. Mikhail GR, Gorsulowsky DC: Spontaneous regression of metastatic malignant melanoma. Dermatol Surg Oncol 12: 497–500, 1986.

    CAS  Google Scholar 

  100. Herberman RB, Holden HT: Natural cell-mediated immunity. Adv Cancer Res 27: 305–337, 1978.

    Article  PubMed  CAS  Google Scholar 

  101. Nowell P: The clonal evolution of tumor cell populations. Science 194: 23–28, 1976.

    PubMed  CAS  Google Scholar 

  102. Nicolson GL: Tumor cell instability, diversification and progression to the metastatic phenotype: from oncogene to oncofetal expression. Cancer Res 47: 1473–1487, 1987.

    PubMed  CAS  Google Scholar 

  103. Corominas M, Leon J, Kamino H, Cruz-Alvarez M, Novick SC, Pellicer A: Oncogene involvement in tumor regression: H-ras activation in the rabbit keratoacanthoma model. Oncogene 6: 645–651, 1991.

    PubMed  CAS  Google Scholar 

  104. Alexandrow MG, Moses HL: Transforming growth factor β and cell cycle regulation. Cancer Res 55: 1452–1457, 1995.

    PubMed  CAS  Google Scholar 

  105. Klein G: The approaching era of the tumor suppressor genes. Science 238: 1539–1545, 1987.

    PubMed  CAS  Google Scholar 

  106. Barbacid M: ras genes. Annu Rev Biochem 56: 779–827, 1987.

    Article  PubMed  CAS  Google Scholar 

  107. Bos JL: The ras gene family and human carcinogenesis. Mutat Res 195: 255–271, 1988.

    PubMed  CAS  Google Scholar 

  108. Bodey B, Bodey B Jr, Groger AM, Luck JV, Siegel SE, Taylor CR, Kaiser HE: Clinical and prognostic significance of the expression of the c-erbB-2 and c-erbB-3 oncoproteins in primary and metastatic malignant melanomas and breast carcinomas. Anticancer Res 17: 1319–1330, 1997.

    PubMed  CAS  Google Scholar 

  109. Hercbergs A, Leith JT: Spontaneous remission of metastatic lung cancer following myxedema coma — an apoptosis-related phenomenon? J Natl Cancer Inst 85: 1342–1343, 1993.

    PubMed  CAS  Google Scholar 

  110. Bodey B, Bodey B Jr, Hall FL: Expression of Transforming Growth Factor-β type II receptors in the cells of the human thymic microenvironment during ontogenesis. In: Molecular Biology of Hematopoiesis, Volume 5, Chapter 78 (Abraham NG, Asano S, Brittinger G, Maestroni GJM, Shadduck R, eds) New York, Plenum Press, pp 645–658, 1996.

    Google Scholar 

  111. Eaves C, Eaves A: Differential manipulation of normal and chronic myeloid leukemia stem cell proliferation in vitro. Blood Cells 20: 83–95, 1994.

    PubMed  CAS  Google Scholar 

  112. Nathason L: Spontaneous regression of malignant melanoma: A review of the literature on incidence, clinical features, and possible mechanisms. Natl Cancer Inst Monogr 44: 67–76, 1976.

    Google Scholar 

  113. Birge RF, Jenks AL, Davis SK: Spontaneous remission in acute leukemia: Report of a case complicated with eclampsia. JAMA 140: 589–592, 1949.

    CAS  Google Scholar 

  114. Cantini E, James B: Acute myelogenous leukemia in pregnancy. South Med J 77: 1050–1052, 1984.

    PubMed  CAS  Google Scholar 

  115. Smithers DW: Cancer of the breast and menopause. Clin Radiol 4: 89–96, 1952.

    Google Scholar 

  116. Lewison EF: Spontaneous regression of breast cancer. Natl Cancer Inst Monogr 44: 23–26, 1976.

    PubMed  CAS  Google Scholar 

  117. Ross MB, Buzdar AU, Hortobagyi GN, Lukeman JM: Spontaneous regression of breast carcinoma: follow-up report and literature review. J Surg Oncol 19: 22–24, 1982.

    PubMed  CAS  Google Scholar 

  118. Taetle R, Guittarad JP: Modulation of leukaemia blast colony growth by steroid hormones. Br J Haemat 50: 247–255, 1982.

    CAS  Google Scholar 

  119. Fisher RI, Neifeld JP, Lippman ME: Oestrogen receptors in human malignant melanoma. Lancet 2: 337–339, 1976.

    PubMed  CAS  Google Scholar 

  120. Papac RJ, Kirkwood J: High dose tamoxifen in malignant melanoma. Cancer Treat Rep 67: 1049, 1983.

    Google Scholar 

  121. Walker MJ: Role of hormones and growth factors in melanomas. Semin Oncol 15: 512–523, 1988.

    PubMed  CAS  Google Scholar 

  122. Jetten AM, Jetten MER: Possible role of retinoic acid binding protein in retinoid stimulation of embryonal carcinoma cell differentiation. Nature 278: 180–182, 1979.

    Article  PubMed  CAS  Google Scholar 

  123. Trown PW, Palleroni AV, Bohoslawec O, Richelo BN, Halpern JM, Gizzi N, Geiger R, Lewinski C, Machlin LJ, Jetten A, Jetten ME: Relationship between binding affinities to cellular retinoic acid-binding protein and in vivo and in vitro properties for 18 retinoids. Cancer Res 40: 212–220, 1980

    PubMed  CAS  Google Scholar 

  124. Jetten AM, Deluca LM: Induction of differentiation of embryonal carcinoma cells by retinol: possible mechanisms. Biochem Biophys Res Commun 114: 593–599, 1983.

    Article  PubMed  CAS  Google Scholar 

  125. Eglitis MA, Sherman MI: Murine embryonal carcinoma cells differentiate in vitro in response to retinol. Exp Cell Res 146: 289–296, 1983.

    Article  PubMed  CAS  Google Scholar 

  126. Strickland S, Breitman TR, Frickel F, Nurrenbach A, Hadicke E, Sporn MB: Structure-activity relationships of a new series of retinoidal benzoic acid derivatives as measured by induction of differentiation of murine F9 teratocarcinoma cells and human HL-60 promyelocytic leukemia cells. Cancer Res 43: 5268–5272, 1983.

    PubMed  CAS  Google Scholar 

  127. Jetten AM: Induction of differentiation of embryonal carcinoma cells by retinoids. In: Retinoids and Cell Differentiation (Sherman MI, ed). Boca Raton, CRC Press, p 105, 1986.

    Google Scholar 

  128. Jetten AM, Anderson K, Deas MA, Kagechika H, Lotan R, Rearick JI, Shudo K: New benzoic acid derivatives with retinoid activity: lack of direct correlation between biological activity and binding to cellular retinoic acid binding protein. Cancer Res 47: 3523–3527, 1987.

    PubMed  CAS  Google Scholar 

  129. Giguere V, Ong ES, Segui P, Evans RM: Identification of a receptor for the morphogen retinoic acid. Nature 330: 624–629, 1987.

    Article  PubMed  CAS  Google Scholar 

  130. Pierce GB: Teratocarcinoma: model for a developmental concept of cancer. Curr Top Dev Biol 2: 223–246, 1967.

    Article  PubMed  CAS  Google Scholar 

  131. Sherman MI, Solter D (eds): Teratomas and Differentiation. New York, Academic Press, 1975.

    Google Scholar 

  132. Martin GR: Teratocarcinomas and mammalian embryogenesis. Science 209: 768–776, 1980.

    PubMed  CAS  Google Scholar 

  133. Bolande RP: Models and concepts derived from human teratogenesis and oncogenesis in early life. J Histochem Cytochem 32: 878–884, 1984.

    PubMed  CAS  Google Scholar 

  134. Astigiano S, Sherman MI, Abarzua P: Regulation and patterns of endogenous and exogenous gene expression during differentiation of embryonal carcinoma cells. Envir Health Persp 80: 25–38, 1989.

    Article  CAS  Google Scholar 

  135. Strickland S, Mahdavi V: The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15: 393–403, 1978.

    Article  PubMed  CAS  Google Scholar 

  136. Strickland S, Smith KK, Marotti KR: Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell 21: 347–355, 1980.

    Article  PubMed  CAS  Google Scholar 

  137. Grover A, Oshima RG, Adamson ED: Epithelial layer formation in differentiating aggregates of F9 embryonal carcinoma cells. J Cell Biol 96: 1690–1696, 1983.

    Article  PubMed  CAS  Google Scholar 

  138. Grover A, Adamson ED: Evidence for the existence of an early common biochemical pathway in the differentiation of F9 cells into visceral or parietal endoderm: modulation by cyclic AMP. Dev Biol 114: 492–503, 1986.

    Article  PubMed  CAS  Google Scholar 

  139. Hong WK, Wittes RE, Hajdu ST, Cvitkovic E, Whitmore WF, Golbey RB: The evolution of mature teratoma from malignant testicular tumors. Cancer 40: 2987–2992, 1977.

    PubMed  CAS  Google Scholar 

  140. Friedman SJ, Skehan P: Morphological differentiation of human choriocarcinoma cells induced by methotrexate. Cancer Res 39: 1960–1967, 1979.

    PubMed  CAS  Google Scholar 

  141. Haas D, Ablin AR, Miller C, Zoger S, Matthay KK: Complete pathologic maturation and regression of stage IVS neuroblastoma without treatment. Cancer 62: 818–825, 1988.

    PubMed  CAS  Google Scholar 

  142. Castaine S, Chomienne C, Daniel MT, Ballerini P, Berger R, Fenaux P, Degos L: All trans retinoic acid as differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 76: 1704–1709, 1990.

    Google Scholar 

  143. Kurie JM, Bosl GJ, Dmitrovsky ED: The genetic and biologic aspects of treatment response and resistance in male germ cell cancer. Semin Oncol 19: 197–205, 1992.

    PubMed  CAS  Google Scholar 

  144. Stoll BA: Spontaneous regression of cancer: new insights. Biotherapy 4: 23–30, 1992.

    Article  PubMed  CAS  Google Scholar 

  145. Helmlinger G, Netti PA, Lichtenbeld HC, Melder RJ, Jain RK: Solid stress inhibits the growth of multicellular tumor spheroids. Nature Biotech 15: 778–783, 1997.

    Article  CAS  Google Scholar 

  146. Fung YC: Biomechanical aspects of growth and tissue engineering. In: Biomechanics, motion, flow, stress, and growth. (Fung YC, ed) New York, Springer-Verlag, pp 499–546, 1990.

    Google Scholar 

  147. Vaage J: Fibrosis in immune control of mammary-tumor growth. Int J Cancer 51: 325–328, 1992.

    PubMed  CAS  Google Scholar 

  148. Gartner MFRM, Fearns C, Wilson EL, Campbell JAH, Dowdle EB: Unusual growth characteristics of human melanoma xenografts in the nude mouse: a model for desmoplasia, dormancy and progression. Br J Cancer 65: 487–490, 1992.

    PubMed  CAS  Google Scholar 

  149. Young JS: The invasive growth of malignant tumours: an experimental interpretation based on elastic-jelly models. J Pathol Bact 77: 321–326, 1959.

    Article  CAS  Google Scholar 

  150. Eaves G: The invasive growth of malignant tumours as a purely mechanical process. J Pathol 109: 233–237, 1973.

    Article  PubMed  CAS  Google Scholar 

  151. Falk P: Patterns of vasculature in two pairs of related fibrosarcomas in the rat and their relation to tumour responses to single large doses of radiation. Eur J Cancer 14: 237–250, 1978.

    PubMed  CAS  Google Scholar 

  152. Falk P: The vascular pattern of the spontaneous C3H mouse mammary carcinoma and its significance in radiation response and in hyperthermia. Eur J Cancer 16: 203–217, 1980.

    PubMed  CAS  Google Scholar 

  153. Tozer GM, Lewis S, Michalowski A, Aber V: The relationship between regional variations in blood flow and histology in a transplanted rat fibrosarcoma. Br J Cancer 61: 250–257, 1990.

    PubMed  CAS  Google Scholar 

  154. Jain RK: Determinants of tumor blood flow: a review. Cancer Res 48: 2641–2658, 1988.

    PubMed  CAS  Google Scholar 

  155. Li L, Price JE, Fan D, Zhang RD, Bucana CD, Fidler IJ: Correlation of growth capacity of human tumor cells in hard agarose with their in vivo proliferative capacity at specific metastatic sites. J Natl Cancer Inst 81: 1406–1412, 1989.

    PubMed  CAS  Google Scholar 

  156. Sutherland RM: Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240: 177–184, 1988.

    PubMed  CAS  Google Scholar 

  157. Oldham RK, Lewko WM, Good RW, Sharp E: Cancer biotherapy with interferon, interleukin-2 and tumor-derived activated cells (TDAC). IN VIVO 8: 653–663, 1994.

    PubMed  CAS  Google Scholar 

  158. Rosenberg SA, Blaese RM, Brenner MK, Deisseroth AB, Ledley FD, Lotze MT, Wilson JM, Nabel GJ, Cornetta K, Economou JS, Freeman SM, Riddell SR, Brenner M, Oldfield E, Gansbacher B, Dunbar C, Walker RE, Schuening FG, Roth JA, Crystal RG, Welsh MJ, Culver K, Heslop HE, Simons J, Wilmott RW, Boucher RC, Siegler HF, Barranger JA, Karlsson S, Kohn D, Galpin JE, Raffel C, Hesdorffer C, Ilan J, Cassileth P, O’Shaughnessy J, Kun LE, Das TK, Wong-Staal F, Sobol RE, Haubrich R, Sznol M, Rubin J, Sorcher EJ, Rosenblatt J, Walker R, Brigham K, Vogelzang N, Hersh E, Eck SL: Human gene marker/therapy clinical protocols. Hum Gene Ther 11: 919–979, 2000.

    PubMed  CAS  Google Scholar 

  159. Jager D, Jager E, Knuth A: Immune responses to tumour antigens: implications for antigen specific immunotherapy of cancer. J Clin Pathol 54: 669–674, 2001; Comment in: J Clin Pathol 54: 675–676, 2001.

    PubMed  CAS  Google Scholar 

  160. Pike M, Peters R, Cozen W, Probst-Hensch NM, Felix JC, Wan PC, Mack TM: Estrogen-Progestin replacement therapy and endometrial cancer. J Natl Cancer Inst 89: 1110–1116, 1997.

    Article  PubMed  CAS  Google Scholar 

  161. Steinbrechner UP, Lisbona R, Huang SN, Mishkin S: Complete regression of hepatocellular adenoma after withdrawal of oral contraceptives. Dig Dis Sci 26: 1045–1050, 1981.

    Google Scholar 

  162. Tahara H, Shiozaki H, Kobayashi K, Yano T, Yano H, Tamura S, Oku K, Miyata M, Wakasa K, Sakurai M: Phenotypic characteristics of tumour-infiltrating-lymphocytes in human oesophageal cancer tissues defined by quantitative two colour analysis with flow-cytometry. Virchows Arch 416: 329–334, 1990.

    CAS  Google Scholar 

  163. Belldegrun A, Kasid A, Uppenkamp M, Topalian SL, Rosenberg SA: Human tumor infiltrating lymphocytes. Analysis of lymphokine mRNA expression and relevance to cancer immunotherapy. J Immunol 142: 4520–4526, 1989.

    PubMed  CAS  Google Scholar 

  164. Muul LM, Spiess PJ, Director EP, Rosenberg SA: Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 101: 171–181, 1987.

    CAS  Google Scholar 

  165. Somers SS, Guillou PJ: Isolation and expansion of lymphocytes from gastrointestinal tumour tissue. Surg Oncol 2: 283–291, 1993.

    PubMed  CAS  Google Scholar 

  166. Belldegrun A, Muul LM, Rosenberg SA: Interleukin-2 expanded tumor-infiltrating lymphocytes in human renal cell cancer: Isolation, characterization, and antitumor activity. Cancer Res 48: 206–214, 1988.

    PubMed  CAS  Google Scholar 

  167. Yoshida K, Tachibana T: Prevention of lymph node metastases by adoptive transfer of CD4+ T lymphocytes admixed with irradiated tumor cells. Cancer Immunol Immunother 36: 323–330, 1993.

    Article  PubMed  CAS  Google Scholar 

  168. Rosenberg SA: The development of new immunotherapies for the treatment of cancer using interleukin-2. Am Surg 208: 121–135, 1988.

    CAS  Google Scholar 

  169. Panelli MC, Bettinotti MP, Lally K, Ohnmacht GA, Li Y, Robbins P, Riker A, Rosenberg SA, Marincola FM: A tumor-infiltrating lymphocyte from a melanoma metastasis with decreased expression of melanoma differentiation antigens recognizes MAGE-12. J Immunol 164: 4382–4392, 2000.

    PubMed  CAS  Google Scholar 

  170. Rosenberg SA: Progress in human tumour immunology and immunotherapy. Nature 411: 380–384, 2001.

    Article  PubMed  CAS  Google Scholar 

  171. Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL, Schwartzentruber DJ, Hwu P, Marincola FM, Sherry R, Leitman SF, Rosenberg SA: Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 24: 363–373, 2001.

    Article  PubMed  CAS  Google Scholar 

  172. Harada M, Li YF, El-Gamil M, Ohnmacht GA, Rosenberg SA, Robbins PF: Melanoma-Reactive CD8+ T cells recognize a novel tumor antigen expressed in a wide variety of tumor types. J Immunother 24: 323–333, 2001.

    Article  PubMed  CAS  Google Scholar 

  173. Riley JP, Rosenberg SA, Parkhurst MR: Identification of a New Shared HLA-A2.1 Restricted Epitope From the Melanoma Antigen Tyrosinase. J Immunother 24: 212–220, 2001.

    Article  CAS  Google Scholar 

  174. Riley JP, Rosenberg SA, Parkhurst MR: Identification of a new shared HLA-A2.1 restricted epitope from the melanoma antigen tyrosinase. J Immunother 24: 212–220, 2001.

    Article  CAS  Google Scholar 

  175. Haas GP, Solomon D, Rosenberg SA: Tumor infiltrating lymphocytes from non-renal urological malignancies. Cancer Immunol Immunother 30: 342–350, 1990.

    Article  PubMed  CAS  Google Scholar 

  176. Miescher S, Whiteside TL, Moretta L, von Fliedner V: Clonal and frequency analyses of tumor-infiltrating T lymphocytes from human solid tumors. J Immunol 138: 4004–4011, 1987.

    PubMed  CAS  Google Scholar 

  177. Schiltz PM, Beutel LD, Nayak SK, Dillman RO: Characterization of tumor-infiltrating lymphocytes derived from human tumors for use as adoptive immunotherapy of cancer. J Immunother 20: 377–386, 1997.

    PubMed  CAS  Google Scholar 

  178. Freedman RS, Tomasovic B, Templin S, Atkinson EN, Kudelka, Edwards CL, Platsoucas CD: Large-scale expansion in interleukin-2 of tumor infiltrating lymphocytes from patients with ovarian carcinoma for adoptive immunotherapy. J Immunol Methods 167: 145–160, 1994.

    Article  PubMed  CAS  Google Scholar 

  179. Freedman RS, Edwards CL, Kavanagh JJ, Kudelka AP, Katz RL, Carrasco CH, Atkinson EN, Scott W, Tomasovic B, Templin S: Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor-infiltrating lymphocytes and low-dose recombinant interleukin-2: a pilot trial. J Immunother 16: 198–210, 1994.

    CAS  Google Scholar 

  180. Lewko WM, Good RW, Bowman D, Smith TL, Oldham RK: Growth of tumor derived activated T-cells for the treatment of cancer. Cancer Biotherapy 9: 211–224, 1994.

    PubMed  CAS  Google Scholar 

  181. Topalian SL, Kasid A, Rosenberg SA: Immunoselection of a human melanoma resistant to specific lysis by autologous tumor-infiltrating lymphocytes. Possible mechanisms for immunotherapeutic failures. J Immunol 144: 4487–4495, 1990.

    PubMed  CAS  Google Scholar 

  182. Liu K, Rosenberg SA: Transduction of an IL-2 Gene into Human Melanoma-Reactive Lymphocytes Results in Their Continued Growth in the Absence of Exogenous IL-2 and Maintenance of Specific Antitumor Activity. J Immunol 167: 6356–6365, 2001.

    PubMed  CAS  Google Scholar 

  183. Beun GD, van de Velde CJ, Feuren GJ: T-cell based cancer immunotherapy: direct or redirected tumor-cell recognition? Immunol Today 15: 11–15, 1994.

    Article  PubMed  CAS  Google Scholar 

  184. Demanet C, Brissinck J, Leo O, Moser M, Thielemans K: Role of T-cell subsets in the bispecific antibody (anti-idiotype × anti-CD3) treatment of the BCL1 lymphoma. Cancer Res 54: 2973–2978, 1994.

    PubMed  CAS  Google Scholar 

  185. Thibault C, Nelson H, Chapovl AI: Tumor-infiltrating lymphocytes can be activated in situ by using in vivo activants plus F(ab’)2 bispecific antibodies. Int J Cancer 67: 232–237, 1996.

    Article  PubMed  CAS  Google Scholar 

  186. Ferrini S, Cambiaggi A, Sforzini S, Canevari S, Mezzanzanica D, Colnaghi MI, Moretta L: Use of anti-CD3 and anti-CD16 bispecific monoclonal antibodies for the targeting of T and NK cells against tumor cells. Cancer Detect Prevent 17: 295–300, 1993.

    PubMed  CAS  Google Scholar 

  187. Weiner LM, Holmes M, Adams GP, LaCreta F, Watts P, Garcia de Palazzo I: A human tumor xenograft model of therapy with a bispecific monoclonal antibody targeting c-erbB-2 and CD16. Cancer Res 53: 94–100, 1993.

    PubMed  CAS  Google Scholar 

  188. Hombach A, Tillmann T, Jensen M, Heuser C, Sircar R, Diehl V, Kruis W, Pohl C: Specific activation of resting T cells against tumour cells by bispecific antibodies and CD28-mediated costimulation is accompanied by Th1 differentiation and recruitment of MHC-independent cytotoxicity. Clin Exp Immunol 108: 352–357, 1997.

    Article  PubMed  CAS  Google Scholar 

  189. Chapoval AI, Nelson H, Thibault C, Penna C, Dean P: Bifunctional antibody retargeting in vivo-activated T lymphocytes: simplifying clinical application. J Hematother 4: 571–577, 1995.

    PubMed  CAS  Google Scholar 

  190. Csoka M, Strauss G, Debatin KM, Moldenhauer G: Activation of T cell cytotoxicity against autologous common acute lymphoblastic leukemia (cALL) blasts by CD3×CD19 bispecific antibody. Leukemia 10: 1765–1772, 1996.

    PubMed  CAS  Google Scholar 

  191. Demanet C, Brissinck J, De Jonge J, Thielemans K: Bispecific antibody-mediated immunotherapy of the BCL1 lymphoma: increased efficacy with multiple injections and CD28-induced costimulation. Blood 87: 4390–4398, 1996.

    PubMed  CAS  Google Scholar 

  192. Haas C, Schirrmacher V: Immunogenicity increase of autologous tumor cell vaccines by virus infection and attachment of bispecific antibodies. Cancer Immunol Immunother 43: 190–194, 1996.

    Article  PubMed  CAS  Google Scholar 

  193. Holliger P, Brissinck J, Williams RL, Thielemans K, Winter G: Specific killing of lymphoma cells by cytotoxic T-cells mediated by a bispecific diabody. Protein Eng 9: 299–305, 1996.

    Article  PubMed  CAS  Google Scholar 

  194. Kroesen BJ, Wellenberg GJ, Bakker A, Helfrich W, The TH, de Leij L: The role of apoptosis in bispecific antibody-mediated T-cell cytotoxicity. Br J Cancer 73: 721–727, 1996.

    PubMed  CAS  Google Scholar 

  195. Kuwahara M, Kuroki M, Arakawa F, Senba T, Matsuoka Y, Hideshima T, Yamashita Y, Kanda H: A mouse/human-chimeric bispecific antibody reactive with human carcinoembryonic antigen-expressing cells and human T-lymphocytes. Anticancer Res 16: 2661–2667, 1996.

    PubMed  CAS  Google Scholar 

  196. Mack M, Gruber R, Schmidt S, Riethmuller G, Kufer P: Biologic properties of a bispecific single-chain antibody directed against 17-1A (EpCAM) and CD3: tumor cell-dependent T cell stimulation and cytotoxic activity. J Immunol 158: 3965–3970, 1997.

    PubMed  CAS  Google Scholar 

  197. Renner C, Held G, Ohnesorge S, Bauer S, Gerlach K, Pfitzenmeier JP, Pfreundschuh M: Role of perforin, granzymes and the proliferative state of the target cells in apoptosis and necrosis mediated by bispecific-antibody-activated cytotoxic T cells. Cancer Immunol Immunother 44: 70–76, 1997.

    Article  PubMed  CAS  Google Scholar 

  198. Blaese RM, Mullen CA, Ramsey WJ: Strategies for gene therapy. Pathologie Biologie 41: 672–676, 1993.

    PubMed  CAS  Google Scholar 

  199. Hwu P, Rosenberg SA: The Genetic Modification of T Cells for Cancer Therapy: An Overview of Laboratory and Clinical Trials. Cancer Detect Prevent 18: 43–50, 1994.

    PubMed  CAS  Google Scholar 

  200. Kawakami Y, Rosenberg A, Lotze MT: Interleukin-4 promotes the growth of tumor infiltrating lymphocytes cytotoxic for human autologous melanoma. J Exp Med 168: 2183–2191, 1988.

    Article  PubMed  CAS  Google Scholar 

  201. Kim TS, Cohen EP: MHC antigen expression by melanomas recovered from mice treated with allogeneic mouse fibroblasts genetically modified for interleukin-2 secretion and the expression of melanoma-associated antigens. Cancer Immunol Immunother 38: 185–193, 1994.

    PubMed  CAS  Google Scholar 

  202. Abdel-Wahab Z, Weltz C, Hester D, Pickett N, Vervaert C, Barber JR, Jolly D, Seigler HF: Phase I clinical trial of immunotherapy with interferon-γ gene-modified autologous melanoma cells: monitoring the humoral immune response. Cancer 80: 401–412, 1997.

    Article  PubMed  CAS  Google Scholar 

  203. Jaffee EM, Pardoll DM: Considerations for the clinical development of cytokine gene-transduced tumor cell vaccines. Methods 12: 143–153, 1997.

    Article  PubMed  CAS  Google Scholar 

  204. Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P: IL-2 production by tumor cells bypasses T helper function in the generation of an anti-tumor response. Cell 60: 387–403, 1990.

    Article  Google Scholar 

  205. Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM: Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254: 713–716, 1991.

    PubMed  CAS  Google Scholar 

  206. Lipshy KA, Kostuchenko PJ, Hamad GG, Bland CE, Barrett SK, Bear HD: Sensitizing T-lymphocytes for adoptive immunotherapy by vaccination with wild-type or cytokine gene-transduced melanoma. Ann Surg Oncol 4: 334–341, 1997.

    PubMed  CAS  Google Scholar 

  207. Aruga E, Aruga A, Arca MJ, Lee WM, Yang NS, Sminth JW 2nd, Chang AE: Immune responsiveness to a murine mammary carcinoma modified to express B7-1, interleukin 12, or GM-CSF. Cancer Gene Ther 4: 157–166, 1997.

    PubMed  CAS  Google Scholar 

  208. Arienti F, Sule-Suso J, Belli F, Mascheroni L, Rivoltini L, Melani C, Maio M, Cascinelli N, Colombo MP, Parmiani G: Limited antitumor T cell response in melanoma patients vaccinated with interleukin-2 gene-transduced allogeneic melanoma cells. Hum Gene Ther 7: 1955–1963, 1996.

    PubMed  CAS  Google Scholar 

  209. Baskar S: Gene-modified tumor cells as cellular vaccine. Cancer Immunol Immunother 43: 165–173, 1996.

    Article  PubMed  CAS  Google Scholar 

  210. Dar MM, Abdel-Wahab Z, Vervaert CE, Darrow T, Barber J, Seigler HF: Immunological memory induced by genetically transduced tumor cells. Ann Surg Oncol 3: 247–254, 1996.

    PubMed  CAS  Google Scholar 

  211. De Wit D, Flemming CL, Harris JD, Palmer KJ, Moore JS, Gore ME, Collins NS MK: IL-12 stimulation but not B7 expression increases melanoma killing by patient cytotoxic T lymphocytes (CTL). Clin Exp Immunol 105: 353–359, 1996.

    PubMed  Google Scholar 

  212. Dunussi-Joannopoulos K, Weinstein HJ, Nickerson PW, Strom TB, Burakoff SJ, Croop JM, Arceci RJ: Irradiated B7-1 transduced primary acute myelogenous leukemia (AML) cells can be used as therapeutic vaccines in murine AML. Blood 87: 2938–2946, 1996.

    PubMed  CAS  Google Scholar 

  213. Knight BC, Souberbielle BE, Rizzardi GP, Ball SE, Dalgleish AG: Allogeneic murine melanoma cell vaccine: a model for the development of human allogeneic cancer vaccine. Melanoma Res 6: 299–306, 1996.

    Article  PubMed  CAS  Google Scholar 

  214. Levitsky HI, Montgomery J, Ahmadzadeh M, Staveley-O’Carroll K, Guarnieri F, Longo DL, Kwak LW: Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7-1-transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J Immunol 156: 3858–3865, 1996.

    PubMed  CAS  Google Scholar 

  215. Mule JJ, Custer M, Averbook B, Yang JC, Weber JS, Goeddel DV, Rosenberg SA, Schall TJ: RANTES secretion by gene-modified tumor cells results in loss of tumorigenicity in vivo: role of immune cell subpopulations. Hum Gene Ther 7: 1545–1553, 1996.

    PubMed  CAS  Google Scholar 

  216. Ohno K, Yoshizawa H, Tsukada H, Takeda T, Yamaguchi Y, Ichikawa K, Maruyama Y, Suzuki Y, Suzuki E, Arakawa M: Adoptive immunotherapy with tumor-specific T lymphocytes generated from cytokine gene-modified tumor-primed lymph node cells. J Immunol 156: 3875–3881, 1996.

    PubMed  CAS  Google Scholar 

  217. Tung C, Federoff HJ, Brownlee M, Karpoff H, Weigel T, Brennan MF, Fong Y: Rapid production of interleukin-2-secreting tumor cells by herpes simplex virus-mediated gene transfer: implications for autologous vaccine production. Hum Gene Ther 7: 2217–2224, 1996.

    PubMed  CAS  Google Scholar 

  218. Wakimoto H, Abe J, Tsunoda R, Aoyagi M, Hirakawa K, Hamada H: Intensified antitumor immunity by a cancer vaccine that produces granulocyte-macrophage colony-stimulating factor plus interleukin 4. Cancer Res 56: 1828–1833, 1996.

    PubMed  CAS  Google Scholar 

  219. Gaken JA, Hollingsworth SJ, Hirst WJ, Buggins AG, Galea-Lauri J, Peakman M, Kuiper M, Patel P, Towner P, Patel PM, Collins MK, Mufti GJ, Farzaneh F, Darling DC: Irradiated NC adenocarcinoma cells transduced with both B7.1 and interleukin-2 induce CD4+-mediated rejection of established tumors. Hum Gene Ther 8: 477–488, 1997.

    PubMed  CAS  Google Scholar 

  220. Lee CT, Wu S, Ciernik IF, Chen H, Nadaf-Rahrov S, Gabrilovich D, Carbone DP: Genetic immunotherapy of established tumors with adenovirus-murine granulocyte-macrophage colony-stimulating factor. Hum Gene Ther 8: 187–193, 1997.

    PubMed  CAS  Google Scholar 

  221. Schmidt W, Maass G, Buschle M, Schweighoffer T, Berger M, Herbst E, Schilcher F, Birnstiel ML: Generation of effective cancer vaccines genetically engineered to secrete cytokines using adenovirus-enhanced transferrinfection (AVET). Gene 190: 211–216, 1997.

    Article  PubMed  CAS  Google Scholar 

  222. Nair SK, Snyder D, Rouse BT, Gilboa E: Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer 70: 706–715, 1997.

    Article  PubMed  CAS  Google Scholar 

  223. Sinkovics JG, Horvath J: New developments in the virus therapy of cancer: a historical review. Intervirology 36: 193–214, 1993.

    PubMed  CAS  Google Scholar 

  224. Kasid A, Morecki S, Aebersold P, Cornetta K, Culver K, Freeman S, Director E, Lotze MT, Blaese RM, Anderson WF: Human gene transfer: Characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man. Proc Natl Acad Sci USA 87: 473–477, 1990.

    PubMed  CAS  Google Scholar 

  225. Abe J, Wakimoto H, Tsunoda R, Okabe S, Yoshida Y, Aoyagi M, Hirakawa K, Hamada H: In vivo antitumor effect of cytotoxic T lymphocytes engineered to produce interferon-γ by adenovirus-mediated genetic transduction. Biochem Biophys Res Commun 218: 164–170, 1996.

    Article  PubMed  CAS  Google Scholar 

  226. Nordon RE, Schindhelm K: Ex vivo manipulation of cell subsets for cell therapies. Artif Organs 20: 396–402, 1996.

    Article  PubMed  CAS  Google Scholar 

  227. Tada M, Sawamura Y, Sakuma S, Suzuki K, Ohta H, Aida T, Abe H: Cellular and cytokine responses of the human central nervous system to intracranial administration of tumor necrosis factor a for the treatment of malignant gliomas. Cancer Immunol Immunother 36: 251–259, 1993.

    Article  PubMed  CAS  Google Scholar 

  228. Moritz D, Groner B: A spacer region between the single chain antibody-and the CD3 zeta-chain domain of chimeric T cell receptor components is required for efficient ligand binding and signaling activity. Gene Ther 2: 539–546, 1995.

    PubMed  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

(2004). Spontaneous Regression of Neoplasms: New Possibilities for Immunotherapy. In: Immunological Aspects of Neoplasia — The Role of the Thymus. Cancer Growth and Progression, vol 17. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2185-2_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-2185-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-2184-8

  • Online ISBN: 978-1-4020-2185-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics