Skip to main content

Sampling on Unions of Shifted Lattices in One Dimension

  • Chapter
Book cover Harmonic Analysis and Applications

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

We give a complete solution to the problem of sampling and interpolation of functions in PW σ(R) on finite unions of shifted lattices in R of the form \( \Lambda j = \frac{1} {{2\sigma _j }}Z + \alpha _j ,j = 1, \ldots ,m \) where σ j > 0, α j R, and ∑ j σ j =σ. At points where more than one lattice intersect, we sample the function and its derivatives. None of the results or techniques employed is new, but a systematic and elementary treatment of this situation does not seem to exist in the literature. Sampling on unions of shifted lattices includes classical sampling, bunched or periodic sampling, and sampling with derivatives. Such sampling sets arise in deconvolution, tomography, and in the theory of functions bandlimited to convex regions in the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Ahlfors, Complex Analysis (Third Edition), McGraw-Hill, New York, 1979.

    MATH  Google Scholar 

  2. S. A. Avdonin and S. A. Ivanov, Families of Exponentials (Translated from the Russian and revised by the authors), Cambridge University Press, Cambridge, 1995.

    MATH  Google Scholar 

  3. J. J. Benedetto, Irregular sampling and frames, in: Wavelets: A Tutorial in Theory and Applications, C. K. Chui, ed., Academic Press, New York, 1992, pp. 445–507.

    Google Scholar 

  4. J. J. Benedetto and W. Heller, Irregular sampling and the theory of frames, I, Mat. Note, 10(suppl. 1) (1990), pp. 103–125.

    MathSciNet  Google Scholar 

  5. C. A. Berenstein, S. Casey, and E. V. Patrick, Systems of convolution equations, deconvolution, and wavelet analysis, U. Maryland Systems Research Center whitepaper (1990).

    Google Scholar 

  6. C. A. Berenstein and E. V. Patrick, Exact deconvolution for multiple convolution operators—an overview, plus performance characterizations for imaging sensors, Proc. IEEE, 78 (1990), pp. 723–734.

    Article  Google Scholar 

  7. C. A. Berenstein, A. Yger, and B. A. Taylor, Sur quelques formules explicites de deconvolution, J. Optics (Paris), 14 (1983), pp. 75–82.

    Google Scholar 

  8. S. D. Casey and D. F. Walnut, Systems of convolution equations, deconvolution, Shannon sampling and the Gabor and wavelet transform, SIAM Review, 36 (1994), pp. 537–577.

    Article  MATH  MathSciNet  Google Scholar 

  9. K. F. Cheung, A multidimensional extension of Papoulis’ generalized sampling expansion with the application in minimum density sampling, in: Advanced Topics in Shannon Sampling and Interpolation Theory, R. J. Marks II, Springer-Verlag, New York, 1993, pp. 85–119.

    Google Scholar 

  10. S. D. Conte and C. de Boor, Elementary Numerical Analysis: An Algorithmic Approach (Third Edition), McGraw-Hill, New York, 1980.

    MATH  Google Scholar 

  11. J. B. Conway, Functions of One Complex Variable (Second Edition), Springer-Verlag, New York, 1978.

    Google Scholar 

  12. L. Desbat, Efficient sampling on coarse grids in tomography, Inverse Problems, 9 (1993), pp. 251–269.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. L. Duren, Theory of H p Spaces, Academic Press, New York, 1970.

    Google Scholar 

  14. A. Faridani, A generalized sampling theorem for locally compact Abelian groups, Math. Comp., 63 (1994), pp. 307–327.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Faridani, An application of a multidimensional sampling theorem to computed tomography, in: Integral geometry and tomography (Arcata, CA, 1989), E. Grinberg and E. T. Quinto, eds., Contemp. Math., Vol. 113, American Mathematical Society, Providence, RI, 1990, pp. 65–80.

    Google Scholar 

  16. H. G. Feichtinger and K. Gröchenig, Theory and practice of irregular sampling, in: Wavelets: Mathematics and Applications, J. J. Benedetto and M. W. Frazier, M., eds., CRC Press, Boca Raton, FL, 1993, pp. 305–363.

    Google Scholar 

  17. A. O. Gel’fond, Calculus of Finite Differences (Translated from the Russian), Hindustan Publishing Corp., Delhi, India, 1971.

    Google Scholar 

  18. I. C. Gohberg and M. G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Americal Mathematical Society, Providence, RI, 1969.

    MATH  Google Scholar 

  19. K. Gröchenig, C. Heil, and D. Walnut, Nonperiodic sampling and the local three squares theorem, Ark. Mat., 38 (2000), pp. 77–92.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. R. Higgins, Five short stories about the cardinal series, Bull. Amer. Math. Soc. (N.S.), 12 (1985), pp. 45–89.

    Article  MATH  MathSciNet  Google Scholar 

  21. J. R. Higgins, Sampling Theory in Fourier and Signal Analysis, Oxford University Press, Oxford, 1996.

    MATH  Google Scholar 

  22. S. V. Hruščev, N. K. Nikol’skii, and B. S. Pavlov, Unconditional basees of exponentials and of reproducing kernels, in: Complex Analysis and Spectral Theory, V. P. Havin and N. K. Nikol’skii, eds., Lecture Notes in Math., Vol. 864, Springer, Berlin, 1981, pp. 214–335.

    Chapter  Google Scholar 

  23. S. H. Izen, Generalized sampling expansion on lattices, IEEE Trans. Signal Processing, 53 (2005), pp. 1949–1963.

    Article  MathSciNet  Google Scholar 

  24. A. Jerri, The Shannon sampling theorem—its various extensions and applications: A tutoring review, Proc. IEEE, 65 (1977), pp. 1565–1596.

    MATH  Google Scholar 

  25. B. Y. Levin, On bases of exponential functions in L 2, Zap. Mekh.-Mat. Fak. i Khar’kov. Mat. Obshch., 27 (1961), pp. 39–48 (Russian).

    Google Scholar 

  26. B. Ja. Levin, Distribution of Zeros of Entire Functions (Translated from the Russian, Revised Edition), Translations of Mathematical Monographs, Vol. 5, American Mathematical Society, Providence, RI, 1980.

    Google Scholar 

  27. B. Ya. Levin, Lectures on Entire Functions (Translated from the Russian), Translations of Mathematical Monographs, Vol. 150, American Mathematical Society, Providence, RI, 1996.

    MATH  Google Scholar 

  28. N. Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, Vol. 26, American Mathematical Society, New York, 1940.

    Google Scholar 

  29. Y. I. Lyubarskii and A. Rashkovskii, Complete interpolating sequences for Fourier transforms supported by convex symmetric polygons, Ark. Mat., 38 (2000), pp. 139–170.

    Article  MATH  MathSciNet  Google Scholar 

  30. R. J. Marks II, Introduction to Shannon Sampling and Interpolation Theory, Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  31. F. Marvasti, Nonuniform sampling, in: Advanced Topics in Shannon Sampling and Interpolation Theory, R. J. Marks II, Springer-Verlag, New York, 1993, pp. 121–156.

    Google Scholar 

  32. N._K. Nikol’skii, Treatise on the Shift Operator (Translated from the Russian), Grundlehren der Mathematischen Wissenschaften, Vol. 263, Springer-Verlag, Berlin, 1986.

    Google Scholar 

  33. R. E. A. C. Paley and N. Wiener, Fourier Transforms in the Complex Domain, American Mathematical Society Colloquium Publications, Vol. 19, American Mathematical Society, New York, 1934.

    MATH  Google Scholar 

  34. A. Papoulis, Signal Analysis, McGraw-Hill, New York, 1977.

    MATH  Google Scholar 

  35. B. S. Pavlov, Basicity of an exponential system and Muckenhoupt’s condition, Soviet Math. Doklady, 20 (1979), pp. 655–659.

    MATH  Google Scholar 

  36. D. P. Petersen and D. Middleton, Sampling and reconstruction of wavenumber-limited functions in N-dimensional Euclidean spaces, Inform. Control, 5 (1962), pp. 279–323.

    Article  MathSciNet  Google Scholar 

  37. I. Singer, Bases in Banach Spaces, I, Springer-Verlag, New York, 1970.

    MATH  Google Scholar 

  38. D. Walnut, Nonperiodic sampling of bandlimited functions on unions of rectangular lattices, J. Fourier Anal. Appl., 2 (1996), pp. 435–452.

    Article  MATH  MathSciNet  Google Scholar 

  39. D. Walnut, Solutions to deconvolution equations using nonperiodic sampling, J. Fourier Anal. Appl., 4 (1998), pp. 669–709.

    Article  MATH  MathSciNet  Google Scholar 

  40. D. F. Walnut, Nonperiodic sampling, conditional convergence and the local three squares theorem, in: Proc. SampTA’99 (1999 International Workshop on Sampling Theory and Applications, Loen, Norway, August 11–14, 1999), 1999, pp. 25–30.

    Google Scholar 

  41. J. L. Yen, On non-uniform sampling of bandwidth-limited signals, IRE Trans. Circuit Theory, 3 (1956), pp. 251–257.

    Google Scholar 

  42. R._M. Young, An Introduction to Nonharmonic Fourier Series (Revised First Edition), Academic Press, San Diego, 2001.

    MATH  Google Scholar 

  43. A. Zayed, ed., Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, FL, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Rom, B., Walnut, D. (2006). Sampling on Unions of Shifted Lattices in One Dimension. In: Heil, C. (eds) Harmonic Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4504-7_13

Download citation

Publish with us

Policies and ethics