Skip to main content

Shape Recognition Based on an a Contrario Methodology

  • Chapter

Abstract

The Achilles’ heel of most shape recognition systems is the decision stage, whose goal is to clearly answer the question of whether two shapes look alike or not. In this chapter we propose a method to address this issue, that consists in pairing two shapes as soon as their proximity is unlikely to be observed “by chance.” This is achieved by bounding the number of false matches between a query shape and shapes from the database. The same statistical principle is used to extract relevant shape elements from images, yielding a complete procedure to decide whether or not two images share some common shapes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Almansa, A. Desolneux, and S. Vamech. Vanishing point detection without any a priori information. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(4):502–507, 2003.

    Article  Google Scholar 

  2. L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. Axioms and fundamental equations of image processing: Multiscale analysis and P.D.E. Archive for Rational Mechanics and Analysis, 16(9):200–257, 1993.

    MathSciNet  Google Scholar 

  3. Y. Amit, D. Geman, and X. Fan. A coarse-to-fine strategy for multiclass shape detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(12):1606–1621, 2004.

    Article  Google Scholar 

  4. N. Arnaud, F. Cavalier, M. Davier, and P. Hello. Detection of gravitational wave bursts by interferometric detectors. Physical Review D, 59(8):082002, 1999.

    Article  Google Scholar 

  5. F. Attneave. Some informational aspects of visual perception. Psychological review, 61(3):183–193, 1954.

    Article  Google Scholar 

  6. R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press, Princeton, NJ, 1961.

    MATH  Google Scholar 

  7. F. Cao. Application of the Gestalt principles to the detection of good continuations and corners in image level lines. Computing and Visualisation in Science, 7(1):3–13, 2004.

    Article  MATH  Google Scholar 

  8. F. Cao, J. Delon, A. Desolneux, P. Musé, and F. Sur. An unified framework for detecting groups and application to shape recognition. Technical Report 5766, INRIA, 2005. Submitted to Journal of Mathematical Imaging and Vision.

    Google Scholar 

  9. F. Cao, P. Musé, and F. Sur. Extracting meaningful curves from images. Journal of Mathematical Imaging and Vision, 22(2–3):159–181, 2004.

    Google Scholar 

  10. V. Caselles, B. Coll, and J.-M. Morel. Topographic maps and local contrast changes in natural images. International Journal of Computer Vision, 33(1):5–27, 1999.

    Article  MathSciNet  Google Scholar 

  11. P.B. Chapple, D.C. Bertilone, R.S. Caprari, and G.N. Newsam. Stochastic model-based processing for detection of small targets in non-gaussian natural imagery. IEEE Transactions on Image Processing, 10(4):554–564, 2001.

    Article  MATH  Google Scholar 

  12. A. Desolneux, L. Moisan, and J.-M. Morel. Meaningful alignments. International Journal of Computer Vision, 40(1):7–23, 2000.

    Article  MATH  Google Scholar 

  13. A. Desolneux, L. Moisan, and J.-M. Morel. Edge detection by Helmholtz principle. Journal of Mathematical Imaging and Vision, 14(3):271–284, 2001.

    Article  MATH  Google Scholar 

  14. A. Desolneux, L. Moisan, and J.-M. Morel. A grouping principle and four applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(4):508–513, 2003.

    Article  Google Scholar 

  15. A. Desolneux, L. Moisan, and J.-M. Morel. A Theory of Digital Image Analysis. 2004. Book in preparation.

    Google Scholar 

  16. P.A. Devijver and J. Kittler. Pattern recognition — A Statistical Approach. Prentice-Hall, Upper Saddle River, NJ, 1982.

    MATH  Google Scholar 

  17. L.C. Evans and R. Gariepy. Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  18. K.J. Friston. Introduction: Experimental design and statistical parametric mapping. In R.S.J. Frackowiak, K.J. Friston, C. Frith, R. Dolan, K.J. Friston, C.J. Price, S. Zeki, J. Ashburner, and W.D. Penny, editors, Human Brain Function, 2nd edition. Academic Press, 2nd edition, 2003.

    Google Scholar 

  19. Y. Gousseau. Comparaison de la composition de deux images, et application la recherche automatique. In proceedings of GRETSI 2003, Paris, France, 2003.

    Google Scholar 

  20. W.E.L. Grimson and D.P. Huttenlocher. On the verification of hypothesized matches in model-based recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(12):1201–1213, 1991.

    Article  Google Scholar 

  21. G. Kanizsa. La Grammaire du Voir. Diderot, 1996. Original title: Grammatica del vedere. French translation from Italian.

    Google Scholar 

  22. Y. Lamdan, J.T. Schwartz, and H.J. Wolfson. Object recognition by affine invariant matching. In Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pages 335–344, Ann Arbor, Michigan, U.S.A., 1988.

    Google Scholar 

  23. M. Lindenbaum. An integrated model for evaluating the amount of data required for reliable recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11):1251–1264, 1997.

    Article  Google Scholar 

  24. J.L. Lisani. Shape Based Automatic Images Comparison. Ph.D. Thesis, Université Paris 9 Dauphine, France, 2001.

    Google Scholar 

  25. J.L. Lisani, L. Moisan, P. Monasse, and J.-M. Morel. On the theory of planar shape. SIAM Multiscale Modeling and Simulation, 1(1):1–24, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  26. D.G. Lowe. Perceptual Organization and Visual Recognition. Kluwer Academic Publisher, 1985.

    Google Scholar 

  27. D. Marr. Vision. Freeman Publishers, San Francisco, CA, 1982.

    Google Scholar 

  28. G. Matheron. Random Sets and Integral Geometry. John Wiley and Sons, 1975.

    Google Scholar 

  29. L. Moisan. Affine plane curve evolution: A fully consistent scheme. IEEE Transactions on Image Processing, 7(3): 411–420, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  30. L. Moisan and B. Stival. A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. International Journal on Computer Vision, 57(3):201–218, 2004.

    Article  Google Scholar 

  31. P. Monasse. Représentation morphologique d’images numériques et application au recalage, Morphological Representation of Digital Images and Application to Registration. Ph.D. Thesis, Université Paris 9 Dauphine, France, 2000.

    Google Scholar 

  32. P. Monasse and F. Guichard. Fast computation of a contrast invariant image representation. IEEE Transactions on Image Processing, 9(5):860–872, 2000.

    Article  Google Scholar 

  33. P. Musé. On the definition and recognition of planar shapes in digital images. Ph.D. Thesis, Ecole Normale Supérieure de Cachan, 2004.

    Google Scholar 

  34. P. Musé, F. Sur, and J.-M. Morel. Sur les seuils de reconnaissance des formes. Traitement du Signal, 20(3):279–294, 2003.

    Google Scholar 

  35. C. Orrite, S. Blecua, and J.E. Herrero. Shape matching of partially occluded curves invariant under projective transformation. Computer Vision and Image Understanding, 93(1):34–64, 2004.

    Article  Google Scholar 

  36. C.A. Rothwell. Object Recognition Through Invariant Indexing. Oxford Science Publications, 1995.

    Google Scholar 

  37. G. Sapiro and A. Tannenbaum. Affine invariant scale-space. International Journal of Computer Vision, 11(1):25–44, 1993.

    Article  Google Scholar 

  38. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

    Google Scholar 

  39. S.D. Silvey. Statistical Inference. Chapman & Hall, London, 1975.

    MATH  Google Scholar 

  40. F. Sur. A contrario decision for shape recognition. Ph.D. Thesis, Université Paris Dauphine, 2004.

    Google Scholar 

  41. R. Veltkamp and M. Hagedoorn. State-of-the-art in shape matching. In M.S. Lew, editor, Principles of Visual Information Retrieval, volume 19. Springer-Verlag, 2001.

    Google Scholar 

  42. M. Wertheimer. Untersuchungen zur Lehre der Gestalt, II. Psychologische Forschung, (4):301–350, 1923. Translation published as Laws of Organization in Perceptual Forms, in Ellis, W. (1938). A source book of Gestalt psychology (pp. 71–88). Routledge & Kegan Paul, London.

    Google Scholar 

  43. D. Zhang and G. Lu. Review of shape representation and description techniques. Pattern Recognition, 37(1):1–19, 2004.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Musé, P., Sur, F., Cao, F., Gousseau, Y., Morel, JM. (2006). Shape Recognition Based on an a Contrario Methodology. In: Krim, H., Yezzi, A. (eds) Statistics and Analysis of Shapes. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4481-4_5

Download citation

Publish with us

Policies and ethics