Skip to main content

Quantized representation theory following Joseph

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 243))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Backelin and K. Kremnitzer, Quantum flag varieties, equivariant quantum D-modules, and localization of quantum groups, arXiv:math. QA/0401108.

    Google Scholar 

  2. P. Baumann, On the center of quantized enveloping algebras, J. Algebra. 203 (1998), 244–260.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Baumann, Another proof of Joseph and Letzter’s separation of variables theorem for quantum groups, Transform. Groups 5 (2000), 3–20.

    Article  MathSciNet  Google Scholar 

  4. P. Baumann, F. Schmidt, Classification of bicovariant calculi on quantum groups, Comm. Math. Physics 194 (1998), 71–86.

    Article  MATH  Google Scholar 

  5. J. Bernstein and V. A. Lunts, A simple proof of Kostant’s theorem that U(g) is free over its center, Amer. J. Math., 118 (1996), 979–987.

    Article  MATH  MathSciNet  Google Scholar 

  6. K. Brown and K. R. Goodearl, Lectures on Algebraic Quantum Groups, Adv. Courses Math. CRM Barcelona, Birkhäuser, Basel, 2002.

    Google Scholar 

  7. P. Caldero, Éléments ad-finis de certains groupes quantiques, C. R. Acad. Sci. Paris (I), 316 (1993), 327–329.

    MATH  MathSciNet  Google Scholar 

  8. P. Caldero, On the Gelfand-Kirillov conjecture for quantum algebras, Proc. Amer. Math. Soc., 128 (2000), 943–951.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Caldero, On harmonic elements for semi-simple Lie algebras, Adv. Math., 166 (2002), 73–99.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. De Concini and V. G. Kac, Representations of quantum groups at roots of 1 in: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory, Prog. in Math. 92, Birkhäuser, Boston 1990, 471–506.

    Google Scholar 

  11. M. Duflo, Sur la classification des idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple, Ann. Math., 105 (1977), 107–120.

    Article  MathSciNet  Google Scholar 

  12. M. Gorelik, The prime and the primitive spectra of a quantum Bruhat cell translate, J. Algebra, 227 (2000), 211–253.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Gorelik, Annihilation theorem and separation theorem for basic classical Lie superalgebras, J. Amer.Math. Soc., 15 (2002), 113–165.

    Article  MATH  MathSciNet  Google Scholar 

  14. M. Gorelik and E. Lanzmann, The annihilation theorem for the completely reducible Lie superalgebras, Invent. Math., 137 (1999), 651–680.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Gorelik and E. Lanzmann, The minimal primitive spectrum of the enveloping algebra of the Lie superalgebra osp(1, 2l), Adv. Math., 154 (2000), 333–336.

    Article  MATH  MathSciNet  Google Scholar 

  16. T. J. Hodges and T. Levasseur, Primitive ideals of C q [SL(3)], Comm. Math. Phys., 156 (1993), 581–605.

    Article  MATH  MathSciNet  Google Scholar 

  17. T. J. Hodges and T. Levasseur, Primitive ideals of C q [SL(n)], J. Algebra, 156 (1993), 581–605.

    MATH  MathSciNet  Google Scholar 

  18. T. J. Hodges and S. P. Smith, Sheaves of noncommutative algebras and the Beilinson-Bernstein equivalence of categories, Proc. Amer. Math. Soc., 93 (1985), 379–386.

    Article  MATH  MathSciNet  Google Scholar 

  19. J.-C. Jantzen, Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren, Math. Ann. 226 (1977), 53–65.

    Article  MATH  MathSciNet  Google Scholar 

  20. B. Kostant, Lie group representations on polynomial rings, Amer. J. Math., 85 (1963), 327–404.

    Article  MATH  MathSciNet  Google Scholar 

  21. B. Kostant, On the existence and irreducibility of certain series of representations, in: Lie Groups and Their Representations, Proc. Summer School Bolyai János Math. Soc., Halsted, New York 1975, 231–329.

    Google Scholar 

  22. S. Kumar, A refinement of the PRV conjecture, Invent. Math., 97 (1989), 305–311.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Letzter, Remarks on the twisted adjoint representation of R q [G], Comm. Algebra, 27 (1999), 1889–1893.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Letzter, Representation theory for quantized enveloping algebras in: Algebraic Groups and Their Generalizations: Quantum and Infinite Dimensional Methods, Proc. Symp. Pure Math. 56, Part 2, Amer. Math. Soc., Providence 1994, 63–80.

    Google Scholar 

  25. G. Letzter, Quantum zonal spherical functions and Macdonald polynomials, Adv. Math., 189 (2004), no. 1, 88–147.

    Article  MATH  MathSciNet  Google Scholar 

  26. V. A. Lunts and A. L. Rosenberg, Localization for quantum groups, Selecta Math. NS, 5 (1999), 123–159.

    Article  MATH  MathSciNet  Google Scholar 

  27. K. P. Parthasarathy, R. Ranga Rao, V. S. Varadarajan, Representations of complex semisimple Lie groups and Lie algebras, Ann. Math., 85 (1967), 383–429.

    Article  MathSciNet  Google Scholar 

  28. N. N. Shapovalov, On a bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funct. Anal. Appl., 6 (1972), 65–70.

    Article  Google Scholar 

  29. S. P. Smith, Quantum groups: an introduction and survey for ring theorists in: Noncommutative Rings, MSRI Publ. 24, Springer, Berlin 1992, 131–178.

    Google Scholar 

  30. Y. S. Soibelman, The algebra of functions on a compact quantum group and its representations, Leningrad Math. J., 2 (1991), 161–178.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Farkas, D.R., Letzter, G. (2006). Quantized representation theory following Joseph. In: Bernstein, J., Hinich, V., Melnikov, A. (eds) Studies in Lie Theory. Progress in Mathematics, vol 243. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4478-4_2

Download citation

Publish with us

Policies and ethics