Skip to main content

Differential operators and cohomology groups on the basic affine space

  • Chapter

Part of the book series: Progress in Mathematics ((PM,volume 243))

Summary

We study the ring of differential operators \( \mathcal{D} \) (X) on the basic affine space X = G/U of a complex semisimple group G with maximal unipotent subgroup U. One of the main results shows that the cohomology group H*(X \( \mathcal{O} \) X) decomposes as a finite direct sum of nonisomorphic simple \( \mathcal{D} \) (X)-modules, each of which is isomorphic to a twist of \( \mathcal{O} \) (X) by an automorphism of \( \mathcal{D} \) (X).

We also use \( \mathcal{D} \) (X) to study the properties of \( \mathcal{D} \) (Z) for highest weight varieties Z. For example, we prove that Z is \( \mathcal{D} \) -simple in the sense that \( \mathcal{O} \) (Z) is a simple \( \mathcal{D} \) (Z)-module and produce an irreducible G-module of differential operators on Z of degree −1 and specified order.

This paper is dedicated to Tony Joseph on the occasion of his 60thbirthday.

The second author was supported in part by the NSF through the grants DMS-9801148 and DMS-0245320. Part of this work was done while he was visiting the Mittag-Leffler Institute and he would like to thank the Institute for its financial support and hospitality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Astashkevich and R. Brylinski, Exotic differential operators on complex minimal nilpotent orbits, in Advances in Geometry, Prog. Math., Vol. 172, Birkhäuser, Boston, 1999, 19–51.

    Google Scholar 

  2. J. Becker, Higher derivations and integral closure, Amer. J. Math., 100 (1978), 495–521.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential operators on the cubic cone, Russian Math. Surveys, 27 (1972), 466–488.

    Article  MathSciNet  Google Scholar 

  4. R. Bezrukavnikov, A. Braverman and L. Positselskii, Gluing of abelian categories and differential operators on the basic affine space, J. Inst. Math. Jussieu, 1 (2002), 543–557.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.-E. Björk, Rings of Differential Operators, North-Holland, Amsterdam, 1979.

    MATH  Google Scholar 

  6. N. Bourbaki, Groupes et Algèbres de Lie, Chapitres 4,5 et 6, Masson, Paris, 1981.

    MATH  Google Scholar 

  7. R. Brylinski and B. Kostant, Minimal representations, geometrical quantization and unitarity, Proc. Natl. Acad. Sci., 91 (1994), 6026–6029.

    Article  MATH  MathSciNet  Google Scholar 

  8. —, Differential operators on conical Lagrangian manifolds, in Lie Theory and Geometry: in honor of Bertram Kostant on the occasion of his 65th birthday, Prog. Math. Vol. 123, Birkhäuser, Boston, 1994, 65–96.

    Google Scholar 

  9. I. M. Gel’fand and A. A. Kirillov, The structure of the Lie field connected with a split semisimple Lie algebra, Funct. Anal. Appl., 3 (1969), 6–21.

    Article  MATH  MathSciNet  Google Scholar 

  10. F. D. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory, Lecture Notes in Mathematics, Vol. 1673, Springer-Verlag, Berlin Heidelberg, 1997.

    MATH  Google Scholar 

  11. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York Heidelberg Berlin, 1977.

    MATH  Google Scholar 

  12. M. Hochster, The Zariski-Lipman conjecture in the graded case, J. Algebra, 47 (1977), 411–424.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. van den Hombergh and H. de Vries, On the differential operators on the quasi-affine variety G/N, Indag. Math., 40 (1978), 460–466.

    MATH  Google Scholar 

  14. Y. Ishibashi, Nakai’s conjecture for invariant subrings, Hiroshima Math. J., 15 (1985), 429–436.

    MATH  MathSciNet  Google Scholar 

  15. J. C. Jantzen, Representations of Algebraic Groups, Second Ed., Math. Surveys and Monographs Vol. 107, Amer. Math. Soc., Providence, RI, 2003.

    Google Scholar 

  16. A. Joseph, The minimal orbit in a simple Lie algebra and its associated maximal ideal, Ann. Sci. éc. Norm. Sup., 9 (1976), 1–29.

    MATH  Google Scholar 

  17. —, A surjectivity theorem for rigid highest weight modules, Invent. Math., 92(1988), 567–596.

    Article  MATH  MathSciNet  Google Scholar 

  18. —, Annihilators and associated varieties of unitary highest weight modules, Ann. Sci. éc. Norm. Sup., 25 (1992), 1–45.

    Google Scholar 

  19. M. Kashiwara, Representation theory and D-modules on flag varieties, Astérisque, 173–174 (1989), 55–109.

    MathSciNet  Google Scholar 

  20. G. Kempf, The Grothendieck-Cousin complex of an induced representation, Advances in Mathematics, 29 (1978), 310–396.

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspekte derMathematik, Vieweg Verlag, 1985.

    Google Scholar 

  22. T. Levasseur, S. P. Smith and J. T. Stafford, The minimal nilpotent orbit, the Joseph ideal, and differential operators, J. Algebra, 116 (1988), 480–501.

    Article  MATH  MathSciNet  Google Scholar 

  23. T. Levasseur and J. T. Stafford, Rings of Differential Operators on Classical Rings of Invariants, Mem. Amer. Math. Soc. 412, 1989.

    Google Scholar 

  24. —, Invariant differential operators and an homomorphism of Harish-Chandra, J. Amer. Math. Soc., 8 (1995), 365–372.

    Article  MATH  MathSciNet  Google Scholar 

  25. —, Differential operators on some nilpotent orbits, Representation Theory, 3(1999), 457–473.

    Article  MATH  MathSciNet  Google Scholar 

  26. M. Lorenz, Gelfand-Kirillov Dimension, Cuadernos de Algebra, No. 7 (Grenada, Spain), 1988.

    Google Scholar 

  27. J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Grad. Texts in Math., Vol. 30, Amer. Math. Soc., Providence, RI, 2000.

    Google Scholar 

  28. Y. Nakai, On the theory of differentials in commutative rings, J. Math. Soc. Japan, 13(1961), 63–84.

    Article  MATH  MathSciNet  Google Scholar 

  29. A. Polishchuk, Gluing of perverse sheaves on the basic affine space. With an appendix by R. Bezrukavnikov and the author, Selecta Math. (N.S.), 7 (2001), 83–147.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. W. Schwarz, Lifting differential operators from orbit spaces, Ann. Sci. Éc. Norm. Sup., 28 (1995), 253–306.

    MATH  Google Scholar 

  31. N. N. Shapovalov, On a conjecture of Gel’fand-Kirillov, Funct. Anal. Appl., 7 (1973), 165–6.

    Article  MATH  Google Scholar 

  32. —, Structure of the algebra of regular differential operators on a basic affine space, Funct. Anal. Appl., 8 (1974), 37–46.

    Article  MATH  Google Scholar 

  33. K. E. Smith, The D-module structure of F-split rings, Math. Research Letters, 2(1995), 377–386.

    MATH  Google Scholar 

  34. T. A. Springer, Linear Algebraic Groups, Progress in Math., Vol. 9, Birkhäuser, Boston, MA., 1998.

    Google Scholar 

  35. W. N. Traves, Nakai’s conjecture for varieties smoothed by normalization, Proc. Amer. Math. Soc., 127 (1999), 2245–2248.

    Article  MATH  MathSciNet  Google Scholar 

  36. E. B. Vinberg and V. L. Popov, On a class of quasi-homogeneous affine varieties, Math. USSR Izvestija, 6 (1972), 743–758.

    Article  Google Scholar 

  37. A. Yekutieli and J. J. Zhang, Dualizing complexes and tilting complexes over simple rings, J. Algebra, 256 (2002), 556–567.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Birkhäuser Boston

About this chapter

Cite this chapter

Levasseur, T., Stafford, J.T. (2006). Differential operators and cohomology groups on the basic affine space. In: Bernstein, J., Hinich, V., Melnikov, A. (eds) Studies in Lie Theory. Progress in Mathematics, vol 243. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4478-4_14

Download citation

Publish with us

Policies and ethics