Skip to main content

False Vacuum: Early Universe Cosmology and the Development of Inflation

  • Conference paper

Part of the book series: Einstein Studies ((EINSTEIN,volume 11))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitchison, Ian J. R. (1982). An informal Introduction to Gauge Field Theories. Cambridge University Press.

    Google Scholar 

  • Albrecht, Andreas and Steinhardt, Paul (1982). Cosmology for grand unified theories with induced symmetry breaking. Physical Review Letters 48, 1220–1223.

    Article  ADS  Google Scholar 

  • Anderson, Philip W. (1963). Plasmons, gauge invariance, and mass. Physical Review 130, 439–442.

    Article  MATH  ADS  Google Scholar 

  • — (1958). Coherent excited states in the theory of superconductivity: Gauge invariance and the Meissner effect. Physical Review 110, 827–835.

    Article  ADS  Google Scholar 

  • Barrow, John D. and Turner, Michael S. (1982). The inflationary universe — birth, death, and transfiguration. Nature 298, 801–805.

    Article  ADS  Google Scholar 

  • Bekenstein, Jacob D. (1975). Nonsingular general-relativistic cosmologies. Physical Review D 11, 2072–2075.

    Article  MathSciNet  ADS  Google Scholar 

  • Belinskii, V. A., Khalatnikov, I.M. and Lifshitz, E. M. (1974). General solutions of the equations of general relativity near singularities. In Confrontation of Cosmological Theories with Observational Data, M. Longair, ed. No. 63 in IAU Symposium, D. Reidel, Dodrecht, 261–275.

    Google Scholar 

  • Bernard, Claude W. (1974). Feynman rules for gauge theories at finite temperature. Physical Review D 9, 3312–3320.

    Article  ADS  Google Scholar 

  • Birrell, Neil C. and Davies, Paul C. W. (1982). Quantum Fields in Curved Space. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Bludman, Sidney A. and Ruderman, Malvin A. (1977). Induced cosmological constant expected above the phase transition restoring the broken symmetry. Physical Review Letters 38, 255–257.

    Article  ADS  Google Scholar 

  • Brout, R., Englert, F. and Gunzig, E. (1980). Spontaneous symmetry breaking and the origin of the universe. In Gravitation, Quanta, and the Universe, A. R. Prasanna, Jayant V. Narlikar and C. V. Vishveshwara, eds., 110–118.

    Google Scholar 

  • — (1979). The causal universe. General Relativity and Gravitation 10, 1–6.

    Article  ADS  Google Scholar 

  • Brout, Robert, Englert, François and Gunzig, Edgard (1978). The creation of the universe as a quantum phenomenon. Annals of Physics 115, 78–106.

    Article  ADS  Google Scholar 

  • Brown, Laurie M. and Cao, Tian Yu (1991). Spontaneous breakdown of symmetry: its rediscovery and integration into quantum field theory. Historical Studies in the Physical and Biological Sciences 21, 211–235.

    Google Scholar 

  • Cao, Tian Yu (1997). Conceptual Developments of 20th Century Field Theories. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Coleman, Sidney (1985). Aspects of Symmetry. Cambridge University Press. Selected Erice lectures.

    Google Scholar 

  • Criss, Thomas, Matzner, Richard, Ryan, Michael and Shepley, Louis (1975). Modern theoretical and observational cosmology. In General Relativity and Gravitation, Shaviv and Rosen, eds. 7, New York: John Wiley & Sons, 33–108.

    Google Scholar 

  • de Sitter, Willem (1931). The expanding universe. Scientia 49, 1–10.

    MATH  Google Scholar 

  • Dicke, Robert and Peebles, P. J. E. (1979). The big bang cosmology-enigmas and nostrums. In General relativity: an Einstein centenary survey, S. W. Hawking and W. Israel, eds., Cambridge University Press, Cambridge, 504–517.

    Google Scholar 

  • Dolan, Louise and Jackiw, Roman (1974). Symmetry behavior at finite temperature. Physical Review D 9, 3320–3341.

    Article  ADS  Google Scholar 

  • Dreitlein, Joseph (1974). Broken symmetry and the cosmological constant. Physical Review Letters 20, 1243–1244.

    Article  ADS  Google Scholar 

  • Earman, John (1995). Bangs, Crunches, Whimpers, and Shrieks. Oxford University Press, Oxford.

    Google Scholar 

  • — (1999). The Penrose-Hawking singularity theorems: History and implications. In The Expanding Worlds of General Relativity, Jürgen Renn, Tilman Sauer and Hubert Gönner, eds. No. 7 in Einstein Studies, Birkhäuser Boston, 235–270.

    Google Scholar 

  • — (2001). Lambda: The constant that refuses to die. Archive for the History of the Exact Sciences 55, 189–220.

    Google Scholar 

  • Earman, John and Mosterin, Jesus (1999). A critical analysis of inflationary cosmology. Philosophy of Science 66, 1–49.

    Article  MathSciNet  Google Scholar 

  • Eddington, Arthur S. (1933). The Expanding Universe. MacMillan, New York.

    Book  MATH  Google Scholar 

  • Einhorn, Martin B. and Sato, Katsuhiko (1981). Monopole production in the very early universe in a first order phase transition. Nuclear Physics B180, 385–404.

    ADS  Google Scholar 

  • Einhorn, Martin B., Stein, Daniel L. and Toussaint, Doug (1980). Are grand unified theories compatible with standard cosmology? Physical Review D 21, 3295–3298.

    Article  MathSciNet  ADS  Google Scholar 

  • Einstein, Albert (1917). Kosmologische betrachtungen zur allgemeinen relativitätstheorie. Preussische Akademie der Wissenschaften (Berlin). Sitzungs berichte, 142–152. Reprinted in translation in: Principle of Relativity, Lorentz et al. eds., Dover, New York, 1923.

    Google Scholar 

  • Eisenstaedt, Jean (1989). The early interpretation of the Schwarzschild solution. In Einstein and the History of General Relativity, John Stachel and Don Howard, eds., Vol. 1 of Einstein Studies. Birkhäuser Boston, 213–33.

    Google Scholar 

  • Ellis, George F. R. and Rothman, Tony (1993). Lost horizons. American Journal of Physics 61, 883–893.

    Article  MathSciNet  ADS  Google Scholar 

  • Ellis, John, Gaillard, Mary K. and Nanopoulos, Dimitri V. (1980). The smoothness of the universe. Physics Letters B 90, 253–257.

    Article  ADS  Google Scholar 

  • Englert, François and Brout, Robert (1964). Broken symmetry and the mass of gauge vector mesons. Physical Review Letters 13, 321–23.

    Article  MathSciNet  ADS  Google Scholar 

  • Farhi, Edward and Jackiw, Roman, eds. (1982). Dynamical Gauge Symmetry Breaking: A collection of reprints. World Scientific, Singapore.

    Google Scholar 

  • Gibbons, Gary W. and Hawking, Stephen W. (1977). Cosmological event horizons, thermodynamics, and particle creation. Physical Review D 15, 2738–51.

    Article  MathSciNet  ADS  Google Scholar 

  • Gliner, Erast B. (1966). Algebraic properties of the energy-momentum tensor and vacuum-like states of matter. (Translated by W. H. Furry.) Soviet Physics JETP 22, 378–382.

    ADS  Google Scholar 

  • — (1970). The vacuum-like state of a medium and Friedman cosmology. Soviet Physics Doklady 15, 559–561.

    ADS  Google Scholar 

  • Gliner, Erast B. and Dymnikova, Irina G. (1975). A nonsigular Friedmann cosmology. Soviet Astronomy Letters 1, 93–94.

    ADS  Google Scholar 

  • Goldstone, Jeffrey (1961). Field theories with’ superconductor’ solutions. Nuovo Cimento 19, 154–164.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldstone, Jeffrey, Salam, Abdus and Weinberg, Steven (1962). Broken symmetries. Physical Review 127.

    Google Scholar 

  • Gott, J. Richard (1982). Creation of open universes from De Sitter space. Nature 295, 304–307.

    Article  ADS  Google Scholar 

  • Grib, Andrej A., Mamayev, S. G. and Mostepanenko, V. M. (1984). Self-consistent treatment of vacuum quantum effects in isotropic cosmology. In West, P. C., eds. Proceedings of the second Seminar on Quantum Gravity; Moscow, October 13–15, 1981. Quantum Gravity. Plenum Press, New York Markov and West (1984), 197–212, 197–212. Proceedings of the second Seminar on Quantum Gravity; Moscow, October 13–15, 1981.

    Google Scholar 

  • Guralnik, G. S., Hagen, C. Richard and Kibble, T. W. B. (1964). Global conservation laws and massless particles. Physical Review Letters 13, 585–587.

    Article  ADS  Google Scholar 

  • Guralnik, Gerald S., Hagen, C. Richard and Kibble, Thomas W. B. (1968). Broken symmetries and the Goldstone theorem. In Advances in Particle Physics, R. L. Cool and R. E. Marshak, eds., vol. 2. 567–708.

    Google Scholar 

  • Gurevich, L. E. (1975). On the origin of the metagalaxy. Astrophysics and Space Science 38, 67–78.

    Article  ADS  Google Scholar 

  • Guth, Alan (1981). Inflationary universe: A possible solution for the horizon and flatness problems. Physical Review D 23, 347–56.

    Article  ADS  Google Scholar 

  • — (1997). The Inflationary Universe. Addison-Wesley, Reading, MA.

    Google Scholar 

  • Guth, Alan and Tye, S.-H. Henry (1980). Phase transitions and magnetic monopole production in the very early universe. Physical Review Letters 44, 631–34.

    Article  ADS  Google Scholar 

  • Guth, Alan H. and Weinberg, Erick J. (1983). Could the universe have recovered from a slow first order phase transition? Nuclear Physics B212, 321.

    ADS  Google Scholar 

  • Hagedorn, Rolf (1970). Thermodynamics of strong interactions at high energy and its consequences for astrophysics. Astronomy and Astrophysics 5, 184–205.

    MATH  ADS  Google Scholar 

  • Hawking, Stephen W. (1970). Conservation of matter in general relativity. Communications in Mathematical Physics 18, 301–306.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Hawking, Stephen W. and Ellis, George F. R. (1968). The cosmic black-body radiation and the existence of singularities in our universe. Astrophysical Journal 152, 25–36.

    Article  ADS  Google Scholar 

  • Higgs, Peter W. (1964). Broken symmetries, massless particles, and gauge fields. Physical Review Letters 12, 132–133.

    Article  MathSciNet  Google Scholar 

  • Janssen, Michel (2002). Explanation and evidence: COI stories from Copernicus to Hockney. Perspectives in Science 10, 457–552.

    Article  MathSciNet  Google Scholar 

  • Kazanas, Demosthenes (1980). Dynamics of the universe and spontaneous symmetry breaking. Astrophysical Journal Letters 241, L59–L63.

    Article  ADS  Google Scholar 

  • Kibble, Thomas W. B. (1976). Topology of cosmic domains and strings. Journal of Physics A9, 1387–97.

    Article  Google Scholar 

  • Kirzhnits, David A. (1972). Weinberg model in the hot universe. JETP Letters 15, 529–531.

    ADS  Google Scholar 

  • Kirzhnits, David A. and Linde, Andrei (1972). Macroscopic consequences of the Weinberg model. Physics Letters B 42, 471–474.

    Article  ADS  Google Scholar 

  • Kolb, Edward W. and Turner, Michael S. (1990). The early universe, vol. 69 of Frontiers in Physics. Addison-Wesley, New York.

    MATH  Google Scholar 

  • Kolb, Edward W. and Wolfram, Stephen (1980). Spontaneous symmetry breaking and the expansion rate of the early universe. Astrophysical Journal 239, 428.

    Article  ADS  Google Scholar 

  • Lapchinksy, V. G., Nekrasov, V. I., Rubakov, V. A. and Veryaskin, A. V. (1984). Quantum field theories with spontaneous symmetry breaking in external gravitational fields of cosmological type. In West, P. C., eds. Proceedings of the second Seminar on Quantum Gravity; Moscow, October 13–15, 1981. Quantum Gravity. Plenum Press, New York Markov and West (1984), 213–230, 213–230. Proceedings of the second Seminar on Quantum Gravity; Moscow, October 13–15, 1981.

    Google Scholar 

  • Lemaître, Georges (1934). Evolution of the expanding universe. Proceedings of the National Academy of Science 20, 12–17.

    Article  MATH  ADS  Google Scholar 

  • Lightman, Alan and Brawer, Roberta (1990). Origins: The Lives and Worlds of Modern Cosmologists. Harvard University Press, Cambridge.

    Google Scholar 

  • Linde, Andrei (1974). Is the Lee constant a cosmological constant? Soviet Physics JETP 19, 183–184.

    MathSciNet  Google Scholar 

  • — (1979). Phase transitions in gauge theories and cosmology. Reports on Progress in Physics 42, 389–437.

    Article  ADS  Google Scholar 

  • — (1982). A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy, and primordial monopole problems. Physics Letters B 108, 389–393.

    Article  ADS  Google Scholar 

  • Lindley, David (1985). The inflationary universe: A brief history. Unpublished manuscript.

    Google Scholar 

  • Markov, M. A. and West, P. C., eds. (1984). Proceedings of the second Seminar on Quantum Gravity; Moscow, October 13–15, 1981. Quantum Gravity. Plenum Press, New York.

    Google Scholar 

  • Misner, Charles W. (1968). The isotropy of the universe. Astrophysical Journal 151, 431–457.

    Article  ADS  Google Scholar 

  • — (1969). Mixmaster universe. Physical Review Letters 22, 1071–1074.

    Article  ADS  Google Scholar 

  • Misner, Charles W., Thorne, Kip and Wheeler, John Archibald (1973). Gravitation. W. H. Freeman & Co., New York.

    Google Scholar 

  • Mukhanov, Viatcheslav F. and Chibisov, G. V. (1981). Quantum fluctuations and a nonsingular universe. JETP Letters 33, 532–535.

    ADS  Google Scholar 

  • Parker, Leonard and Fulling, Stephen A. (1973). Quantizedmatter fields and the avoidance of singularities in general relativity. Physical Review D 7, 2357–2374.

    Article  ADS  Google Scholar 

  • Peebles, Phillip James Edward (1971). Physical Cosmology. Princeton University Press, Princeton.

    Google Scholar 

  • Penrose, Roger (1979). Singularities and time-asymmetry. In General Relativity: An Einstein centenary survey, Stephen Hawking and Werner Israel, eds. Cambridge University Press, Cambridge, 581–638.

    Google Scholar 

  • — (1989). Difficulties with inflationary cosmology. Annals of the New York Academy of Sciences 271, 249–264.

    Google Scholar 

  • Pickering, Andrew (1984). Constructing Quarks: A sociological history of particle physics. University of Chicago Press, Chicago.

    Google Scholar 

  • Polyakov, Alexander M. (1974). Particle spectrum in quantum field theory. JETP Letters 20, 194–195.

    ADS  Google Scholar 

  • Preskill, John P. (1979). Cosmological production of superheavy magnetic monopoles. Physical Review Letters 43, 1365–8. Reprinted in Bernstein and Feinberg, pp. 292–298.

    Article  ADS  Google Scholar 

  • Press, William H. (1980). Spontaneous production of the Zel’dovich spectrum of cosmological fluctuations. Physica Scripta 21, 702–702.

    Article  ADS  Google Scholar 

  • Rindler, Wolfgang (1956). Visual horizons in world models. Monthly Notices of the Royal Astronomical Society 116, 662–677.

    MathSciNet  ADS  Google Scholar 

  • Rugh, Svend E. and Zinkernagel, Henrik (2002). The quantum vacuum and the cosmological constant problem. Studies in the History and Philosophy of Modern Physics 33, 663–705.

    Article  MathSciNet  Google Scholar 

  • Ryder, Lewis H. (1996). Quantum field theory. 2nd ed. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Sakharov, Andrei D. (1966). The initial state of an expanding universe and the appearance of a nonuniform distribution of matter. Soviet Physics JETP 22, 241–249. Reprinted in Collected Scientific Works.

    ADS  Google Scholar 

  • — (1970). A multisheet cosmological model. Preprint, Moscow Institute of Applied Mathematics. Translated in Collected Scientific Works.

    Google Scholar 

  • — (1982). Collected Scientific Works. Marcel Dekker, New York.

    Google Scholar 

  • Sato, Katsuhiko (1981). First-order phase transition of a vacuum and the expansion of the universe. Monthly Notices of the Royal Astronomical Society 195, 467–479.

    ADS  Google Scholar 

  • Starobinsky, Alexei (1978). On a nonsingular isotropic cosmological model. Soviet Astronomy Letters 4, 82–84.

    ADS  Google Scholar 

  • — (1979). Spectrum of relict gravitational radiation and the early state of the universe. JETP Letters 30, 682–685.

    ADS  Google Scholar 

  • — (1980). A new type of isotropic cosmological models without singularity. Physics Letters B 91, 99–102.

    Article  ADS  Google Scholar 

  • — (1984). Nonsingular model of the universe with the quantum-gravitational de Sitter stage and its observational consequences. In West, P. C., eds. Proceedings of the second Seminar on Quantum Gravity; Moscow, October 13–15, 1981. Quantum Gravity. Plenum Press, New York Markov and West (1984). Proceedings of the second Seminar on Quantum Gravity; Moscow, October 13–15, 1981.

    Google Scholar 

  • Steigman, Gary, Schramm, David N. and Gunn, James E. (1977). Cosmological limits to the number of massive leptons. Physics Letters B 66, 202–204.

    Article  ADS  Google Scholar 

  • ’t Hooft, Gerard (1974). Magnetic monopoles in unified gauge theories. Nuclear Physics B79, 276–284.

    MathSciNet  ADS  Google Scholar 

  • Tolman, Richard C. (1934). Relativity, Thermodynamics, and Cosmology. Oxford University Press, Oxford. Reprinted by Dover.

    MATH  Google Scholar 

  • Tryon, Edward (1973). Is the universe a vacuum fluctuation? Nature 246, 396–397.

    Article  ADS  Google Scholar 

  • Veltman, Martinus J. G. (1974). Cosmology and the Higgs mechanism. Rockefeller University Preprint.

    Google Scholar 

  • — (1975). Cosmology and the Higgs mass. Physical Review Letters 34, 777.

    Google Scholar 

  • — (2000). Nobel lecture: from weak interactions to gravitation. Reviews of Modern Physics 72, 341–349.

    Google Scholar 

  • Wald, Robert (1984). General Relativity. University of Chicago Press, Chicago.

    MATH  Google Scholar 

  • Weinberg, Steven (1967). A model of leptons. Physical Review Letters 19, 1264–66.

    Article  ADS  Google Scholar 

  • — (1972). Gravitation and Cosmology. John Wiley & Sons, New York.

    Google Scholar 

  • — (1974a). Gauge and global symmetries at high temperature. Physical Review D 9, 3357–3378.

    Google Scholar 

  • — (1974b). Recent progress in gauge theories of the weak, electromagnetic, and strong interactions. Reviews of Modern Physics 46, 255–277.

    Google Scholar 

  • — (1977). The First Three Minutes. Basic Books, Inc., New York.

    Google Scholar 

  • — (1980). Conceptual foundations of the unified theory of weak and electromagnetic interactions. Reviews of Modern Physics 52, 515–523.

    Article  MathSciNet  ADS  Google Scholar 

  • Yoshimura, Motohiko (1978). Unified gauge theories and the baryon number of the universe. Physical Review Letters 41, 281–284.

    Article  ADS  Google Scholar 

  • Zee, Anthony (1979). Broken-symmetric theory of gravity. Physical Review Letters 42, 417–421.

    Article  ADS  Google Scholar 

  • — (1980). Horizon problem and broken-symmetric theory of gravity. Physical Review Letters 44, 703–706.

    Article  ADS  Google Scholar 

  • — (1982). Calculating Newton’s gravitational constant in infrared stable Yang-Mills theories. Physical Review Letters 48, 295–298.

    Article  ADS  Google Scholar 

  • Zel’dovich, Yakov B. (1967). Cosmological constant and elementary particles. JETP Letters 6, 316–317.

    ADS  Google Scholar 

  • — (1968). The cosmological constant and the theory of elementary particles. (Translated by J. G. Adashko.) Soviet Physics Uspekhi 11, 381–393.

    Article  Google Scholar 

  • — (1981). Vacuum theory-A possible solution to the singularity problem of cosmology. Soviet Physics Uspekhi 133, 479–503.

    Google Scholar 

  • Zel’dovich, Yakov B. and Khlopov, Maxim Yu. (1978). On the concentration of relic magnetic monopoles in the universe. Physics Letters B 79, 239–41.

    Article  ADS  Google Scholar 

  • Zel’dovich, Yakov B., Kobzarev, Igor Yu. and ’Okun, Lev B. (1975). Cosmological consequences of a spontaneous breakdown of a discrete symmetry. Soviet Physics JETP 40, 1–5.

    ADS  Google Scholar 

  • Zel’dovich, Yakov B. and Pitaevsky, Lev P. (1971). On the possibility of the creation of particles by a classical gravitational field. Communications in Mathematical Physics 23, 185–188.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 The Center for Einstein Studies

About this paper

Cite this paper

Smeenk, C. (2005). False Vacuum: Early Universe Cosmology and the Development of Inflation. In: Kox, A.J., Eisenstaedt, J. (eds) The Universe of General Relativity. Einstein Studies, vol 11. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4454-7_13

Download citation

Publish with us

Policies and ethics