Skip to main content

Dynamic Light Scattering Monitoring of Asphaltene Aggregation in Crude Oils and Hydrocarbon Solutions

  • Chapter
Book cover Asphaltenes, Heavy Oils, and Petroleomics

Abstract

An overview of dynamic light scattering (DLS) studies of asphaltene aggregation in hydrocarbons and crude oils is presented. A special optical scheme, to make light scattering measurements in “nontransparent” light-absorbing colloids possible, has been designed and tested. The modified DLS is an effective technique for real-time monitoring of petroleum colloids. Combined with accurate viscosity measurements, DLS is a powerful tool for investigating the colloid nature of crude oils, heavy petroleum fractions, and asphaltene solutions. Various regimes of asphaltene aggregation have been investigated by DLS in crude oils and hydrocarbon mixtures. Crossover between reaction-limited aggregation and diffusion-limited aggregation has been observed in hydrocarbon solutions of asphaltenes. Asphaltene colloidal structures, originally persisting in some crude oils, have been detected. Using n-heptane as precipitant, we have studied stability of crude oils with respect to asphaltene aggregation. We have found that the oils with different aromatics/saturates ratios exhibit different aggregation kinetics. Formation of stable asphaltene aggregates, originating from ultrasonic agitation and surfactant addition, has been also studied. A DLS microrheology in a crude oil has been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sheu, E.Y. and D.A. Storm (1995). Colloidal properties of asphaltenes in organic solvent. In: E.Y. Sheu and O.C. Mullins (eds.). Asphaltenes: Fundamentals and Applications. Plenum, New York, p. 1.

    Google Scholar 

  2. Yen, T.F. (1998). Asphaltenes: Types and sources. In: O.C. Mullins and E. Y. Sheu (eds.). Structure and Dynamic of Asphaltenes. Plenum, New York, p. 1.

    Google Scholar 

  3. Long, R.B. (1981). The concept of asphaltenes. In: J.W. Bunger and N.C. Li (eds.). Chemistry of Asphaltenes. Advances in Chemistry, Series 195. American Chemical Society, Washington. DC.

    Google Scholar 

  4. Storm, D.A. and E.Y. Sheu (1993). Fuel 72, 233.

    Article  CAS  Google Scholar 

  5. Groenzin, H. and O.C. Mullins (2000). Energy Fuels 14, 667.

    Article  Google Scholar 

  6. Mack, C. (1932). Phys. Chem. 36, 2901.

    Article  CAS  Google Scholar 

  7. Nellensteyn, F.J. (1933). Proc. World Petroleum Congress. 2, 616.

    CAS  Google Scholar 

  8. Pfeiffer, J.P. and R.N.J. Saal (1940). J. Phys. Chem. 44, 139.

    Article  CAS  Google Scholar 

  9. Buckley, J.S., G.J. Hirasaki, Y. Liu, S. Von Dracek, J-X. Wang, and B.S. Gill (1998). Petroleum Sci. Technol. 16(34).

    Google Scholar 

  10. Wang, J. (2000). Predicting Asphaltene Flocculation in Crude Oils. PHD thesis, New Mexico Institute of Mining & Technology, Socorro, New Mexico, 87801.

    Google Scholar 

  11. Mason, T.G. and M.Y. Lin (2003). Phys. Rev. E 67, 050401(R).

    Article  Google Scholar 

  12. Mason, T.G. and M.Y. Lin (2003). J. Chem. Phys. 119, 565.

    Article  CAS  Google Scholar 

  13. Andersen, S.I. and J.G. Speight (1993). Fuel 72, 1343.

    Article  CAS  Google Scholar 

  14. Andersen, S.I. and S.D. Christensen (2000). Energy Fuels 14, 38.

    Article  CAS  Google Scholar 

  15. Sheu, E.Y., M.M. De Tar, D.A. Storm, and S.J. DeCanio (1992). Fuel 71, 299.

    Article  CAS  Google Scholar 

  16. Andersen, S.I. and K.S. Birdi (1991). J. Colloid. Interface Sci. 142, 497.

    Article  CAS  Google Scholar 

  17. Andreatta, G., N. Bostrom, and O.C. Mullins (2005). Langmuir 21, 2728.

    Article  CAS  Google Scholar 

  18. Oliver, C.J. (1974). Correlation techniques. H.Z. Cummins and E.R. Pike (eds.). Photon Correlation and Light Beating Spectroscopy. Plenum, New York, p. 151.

    Google Scholar 

  19. Anisimov, M.A., I.A. Dmitrieva, and I.K. Yudin (1988). Optika i Spectroskopiya (in Russian) 49, 144.

    CAS  Google Scholar 

  20. Yudin, I.K., G.L. Nikolaenko, E.E. Gorodetskii, and V.I. Kosov (1996). Colloid Aggregation Kinetics in Opaque Petroleum Mixture. In: Photon Correlation and Scattering. OSA Technical Digest Series. OSA, Washington DC, 14, p. 128.

    Google Scholar 

  21. Yudin, I.K., G.L. Nikolaenko, V.I. Kosov, V.A. Agayan, M.A. Anisimov, and J.V. Sengers (1997). Int. J. Thermophys. 18, 1237.

    Article  CAS  Google Scholar 

  22. Yudin, I.K. and G.L. Nikolaenko (1997). Photon correlation spectroscopy of opaque fluids. In: E.R. Pike and J.B. Abbiss (eds.), Light Scattering and Photon Correlation Spectroscopy. Kluwer Academic Publishers, The Netherlands, p. 341.

    Google Scholar 

  23. http://www.photocor.com. Opaque-dispersions.htm

    Google Scholar 

  24. Herzog, P., D. Tchoubar, and D. Espinat (1988). Fuel 67, 245.

    Article  CAS  Google Scholar 

  25. Ravey, J.S., G. Ducouret, and D. Espinat (1988). Fuel 67, 1560.

    Article  CAS  Google Scholar 

  26. Anisimov, M.A., I.K. Yudin, V.V. Nikitin, G.L. Nikolaenko, A.I. Chernoutsan, H. Toulhoat et al. (1995). J. Phys. Chem. 99, 9576.

    Article  CAS  Google Scholar 

  27. Sheu, E.Y., K.S. Liang, S.K. Sinha, and R.E. Overfield (1992). J. Colloid Interface Sci. 153(2), 399.

    Article  CAS  Google Scholar 

  28. Wu, J., J.M. Prausnitz, and A. Firoozabadi (1998). AIChE J. 44, 1188.

    Article  CAS  Google Scholar 

  29. Wu, J., J.M. Prausnitz, and A. Firoozabadi (2000). AIChE J. 46, 197.

    Article  CAS  Google Scholar 

  30. Firoozabaddi, J.A. (1999). Thermodynamics of Hydrocarbon Reservoirs. McGraw-Hill, New York.

    Google Scholar 

  31. Burya, E.G., I.K. Yudin, V.A. Dechabo, V.I. Kosov, M.A. Anisimov (2001). Appl. Opt. 40, 4028.

    Article  Google Scholar 

  32. Yudin, I.K., G.L. Nikolaenko, E.E. Gorodeskii, V.I. Kosov, V.R. Melikyan, E.L. Markhashov et al. (1998). J. Petrol. Sci. Eng. 20, 297.

    Article  CAS  Google Scholar 

  33. Nadirov, N.K., L.H. Batrakov, S.M. Burkitbaev, and S.B. Nurzhanov (1987). Dokl. Akad. Nauk (in Russian, available in English), 295, 1177.

    CAS  Google Scholar 

  34. Yudin, I.K., G.L. Nikolaenko, E.E. Gorodetskii, E.L. Markhashov, D. Frot, Y. Briolant et al. (1998). J. Petrol. Sci. Technol. 16, 395.

    Article  CAS  Google Scholar 

  35. Yudin, I.K., G.L. Nikolaenko, E.E. Gorodeskii, E.L. Markhashov, V.A. Agayan, M.A. Anisimov et al. (1998). Physica A 251, 235.

    Article  CAS  Google Scholar 

  36. Weitz, D.A., J.S. Huang, M.Y. Lin, and J. Sung (1985). Phys. Rev. Lett. 54, 1416.

    Article  CAS  Google Scholar 

  37. Weitz, D.A. and M.Y. Lin (1986). Phys. Rev. Lett. 57, 2037.

    Article  CAS  Google Scholar 

  38. Lin, M.Y., H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein, and P. Meakin (1990). Phys. Rev. A. 41, 2005.

    Article  CAS  Google Scholar 

  39. Von Smoluehowski, M. (1916). Phys. Z. 17, 593.

    Google Scholar 

  40. Yudin, I.K., G.L. Nikolaenko, E.E. Gorodetskii, E.L. Markhashov, V.A. Agayan, and M.A. Anisimov (2000). Crossover from reaction-limited aggregation to diffusion-limited aggregation of asphaltenes in hydrocarbon solutions. In: Porous Media: Physics, Models, Simulation. World Scientific, Singapore, p. 75.

    Google Scholar 

  41. Burya, E.G., I.K. Yudin, V.A. Dechabo, and M.A. Anisimov (2001). Int. J. Termophys. 22, 1397.

    Article  CAS  Google Scholar 

  42. Yudin, I.K., V.I. Kosov, V.A. Deshabo, E.E. Gorodetskii, Y.G. Burya, and M.A. Anisimov (2000). Aggregation phenomena in petroleum colloids studied by dynamic light scattering. In: Photon Correlation & Scattering. OSA Technical Digest Series. OSA, Washington, DC, p. 30.

    Google Scholar 

  43. Clark, J. P.F. and B.B. Pruden (1997). Fuel 76, 607.

    Article  Google Scholar 

  44. McLean, J.D. and P.K. Kilpatrick (1997). J. Coll. Interface Sci. 189, 242.

    Article  CAS  Google Scholar 

  45. McLean, J.D. and P.K. Kilpatrick (1997). J. Coll. Interface Sci. 196, 23.

    Article  CAS  Google Scholar 

  46. Escobedo, J., and G.A. Mansoori (1995). SPE Production Facilities May, 115.

    Google Scholar 

  47. Escobedo, J., and G.A. Mansoori (1997). SPE Production Facilities May, 116.

    Google Scholar 

  48. Fenistein, D., L. Barre, D. Broseta, D. Espinat, A. Livet, J-N. Roux et al. (1998). Langmuir 14, 1013.

    Article  CAS  Google Scholar 

  49. Mason, T.G. and D.A. Weitz (1995). Phys. Rev. Lett. 74, 1250.

    Article  CAS  Google Scholar 

  50. Crocker, J.C., M.T. Valentine, E.R. Weeks, T. Gisler, P.D. Kaplan, A.G. Yodh et al. (2000). Phys. Rev. Lett. 85, 888.

    Article  CAS  Google Scholar 

  51. Williams, D.F. and C.H. Byers (1986). J. Phys. Chem. 90, 2534.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Yudin, I.K., Anisimov, M.A. (2007). Dynamic Light Scattering Monitoring of Asphaltene Aggregation in Crude Oils and Hydrocarbon Solutions. In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_17

Download citation

Publish with us

Policies and ethics