Skip to main content

Molecular Composition and Dynamics of Oils from Diffusion Measurements

  • Chapter

Abstract

We discuss examples and methods for using NMR diffusion measurements to obtain information about molecular sizes, their distributions, and dynamics. Scaling relationships between chain lengths and diffusion constants are derived and tested on diffusion measurements of many samples, including crude oils that are high in saturates. The diffusion constants of asphaltenes are also measured as a function of asphaltene concentration, indicating the formation of asphaltene aggregates at a concentration of approximately 0.2 g/L, and the sizes of the individual asphaltene molecules and aggregates are obtained. The examples and methods discussed in this paper can become the basis for in situ characterization of crude oils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, B.T., C.E. Boord, S.S. Kurtz Jr., and L. Schmerling (eds.) (1954). The Chemistry of Petroleum Hydrocarbons, Vol. 1. Reinhold Publishing, New York.

    Google Scholar 

  2. Speight, J.G. (1980). The Chemistry and Technology of Petroleum. Marcel Dekker, New York.

    Google Scholar 

  3. Tissot, B.P. and D.H. Welte (1984). Petroleum Formation and Occurrence. Springer-verlag, Berlin.

    Google Scholar 

  4. Mullins, O.C. and E.Y. Sheu (1988). Structure and Dynamics of Asphaltenes. Plenum Press, New York.

    Google Scholar 

  5. Betancourt, S., G. Fujisawa, O.C. Mullins, A. Carnegie, C. Dong, A. Kurkjian et al. (2003). “Analyzing hydrocarbons in the borehole”, Oilfield Rev. 15, 54.

    CAS  Google Scholar 

  6. Hürlimann, M.D., L. Venkataramanan, and C. Flaum (2002). “The diffusion-spin relaxation time distribution as an experimental probe to characterize fluid mixtures in porous media”, J. Chem. Phys. 117, 10223.

    Article  Google Scholar 

  7. Kleinberg, R. (1995). Well logging. In: D.M. Grant and R. K. Harris (eds.), Encyclopedia of Nuclear Magnetic Resonance. John Wiley and Sons, New York.

    Google Scholar 

  8. Hürlimann, M.D., L. Venkataramanan, C. Flaum, P. Speier, C. Karmonik, R. Freedman et al. (2002). Diffusion-Editing: New NMR Measurement of Saturation and Pore Geometry. In: 43rd Annual SPWLA Meeting. Oiso, Japan, p. paper FFF.

    Google Scholar 

  9. Freedman, R., A. Sezginer, M. Flaum, A. Matteson, S. Lo, and G. J. Hirasaki (2000). “A New NMR Method of Fluid Characterization in Reservoir Rocks: Experimental Confirmation and Simulation Results”, Paper SPE 63214 presented at the 2000 SPE Annual Technical Conference and Exhibition.

    Google Scholar 

  10. Einstein, A. (1905). “ Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen”, Ann. Phys. 17, 549.

    Article  CAS  Google Scholar 

  11. Ferry, J.D. (1980). Viscoelastic Properties of Polymers. John Wiley and Sons, New York.

    Google Scholar 

  12. Doi, M. and S.F. Edwards (1998). The Theory of Polymer Dynamics. Oxford University Press, New York.

    Google Scholar 

  13. de Gennes, P.G. (1971). “Reptation of a polymer chain in the presence of fixed obstacles”, J. Chem. Phys. 55, 572.

    Article  Google Scholar 

  14. Klein, J. (1978). “Evidence for reptation in an entangled polymer melt”, Nature 271, 143.

    Article  CAS  Google Scholar 

  15. Rouse, P.E. (1953). “A theory of the linear viscoelastic properties of dilute solutions of coiling polymers”, J. Chem. Phys. 21, 1272.

    Article  CAS  Google Scholar 

  16. Douglass, D.C. and D.W. McCall (1958). “Diffusion in paraffin hydrocarbons”, J. Phys. Chem. 62, 1102.

    Article  CAS  Google Scholar 

  17. Bachus, R. and R. Kimmich (1983). “Molecular weight and temperature dependence of selfdiffusion coefficients in polyethylene and polystyrene melts investigated using a modified N.M.R. field gradient technique”, Polymer 24, 964.

    Article  CAS  Google Scholar 

  18. Vardag, T., N. Karger, and H.-D. Lüdemann (1991). “Temperature and pressure dependence of self-diffusion in long liquid n-alkanes”, Ber. Bunsenges. Phys. Chem. 95(8), 859.

    CAS  Google Scholar 

  19. von Meerwall, E., S. Beckman, J. Jang, and W.L. Mattice (1998). “Diffusion of liquid n-alkanes: Free-volume and density effects”, J. Chem. Phys. 108(10), 4299.

    Article  Google Scholar 

  20. Zimm, B.H. (1956). “Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss”, J. Chem. Phys. 24, 269.

    Article  CAS  Google Scholar 

  21. Callaghan, P.T. (1993). Principles of Nuclear Magnetic Resonance Microscopy. Oxford University Press, New York.

    Google Scholar 

  22. Hahn, E. (1950). “Spin echoes”, Phys. Rev. 80, 580.

    Article  Google Scholar 

  23. Tikhonov, A.N. and V.Y. Arsenin (1977). Solutions of Ill-Posed Problems. John Wiley and Sons, New York.

    Google Scholar 

  24. Venkataramanan, L., Y.-Q. Song, and M. D. Hürlimann (2002). “Solving fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions”, IEEE Trans. Signal Proc. 50, 1017.

    Article  Google Scholar 

  25. Song, Y.-Q., L. Venkataramanan, M. Hürlimann, M. Flaum, P. Frulla, and C. Straley (2002). “T1-T2 correlation spectra obtained using a fast two-dimensional laplace inversion”, J. Magn. Reson. 154, 261.

    Article  CAS  Google Scholar 

  26. Kroeker, R.M. and R. M. Henkelman (1986). “Analysis of biological NMR relaxation data with continuous distributions of relaxation times”, J. Magn. Reson. 69, 218.

    CAS  Google Scholar 

  27. Fordham, E.J., A. Sezginer, and L.D. Hall (1995). “Imaging multiexponential relaxation in the (y, logTl) plane, with application to clay filtration in rock cores”, J. Magn. Reson. Ser. A 113, 139.

    Article  CAS  Google Scholar 

  28. Borgia, G.C., R.J.S. Brown, and P. Fantazzini (1998). “Uniform-penalty inversion of multiexponential decay data”, J. Magn. Reson. 132, 65.

    Article  CAS  Google Scholar 

  29. Song, Y.-Q., L. Venkataramanan, and L. Burcaw (2005). “Determining the resolution of laplace inversion spectrum”, J. Chem. Phys. 122, 104104.

    Article  Google Scholar 

  30. Lo, S.-W, G.J. Hirasaki, W.V. House, and R. Kobayashi (2000). Correlations of NMR Relaxation Time with Viscosity, Diffusivity, and Gas/Oil Ratio of Methane/Hydrocarbon Mixtures. In: Proceedings of the 2000 Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

    Google Scholar 

  31. Straley, C. (2002). The Low Field NMR of Refined Oils at Elevated Temperature and Pressure (unpublished).

    Google Scholar 

  32. Freed, D.E., L. Burcaw, and Y.-Q. Song (2005). “Scaling laws for diffusion coefficients in mixtures of alkanes”, Phys. Rev. Lett. 94, 067602.

    Article  Google Scholar 

  33. von Meerwall, E. and E.J. Feick (1999). “Diffusion in binary liquid n-alkane and alkanepolyethylene blends”, J. Chem. Phys. 111(2), 750.

    Article  Google Scholar 

  34. Helbæk, M., B. Hafskjold, D.K. Dysthe, and G.H. Sørland (1996). “Self-diffusion coefficients of methane or ethane mixtures with hydrocarbons at high pressure by NMR”, J. Chem. Eng. Data 41, 598.

    Article  CAS  Google Scholar 

  35. Lo, S.-W., G.J. Hirasaki, R. Kobayashi, and W.V. House (1998). “Relaxation time and diffusion measurements of methane and n-decane mixtures”, The Log Analyst 39, 43.

    Google Scholar 

  36. Van Geet, A.L. and A.W. Adamson (1964). “Diffusion in liquid hydrocarbon mixtures”, J. Phys. Chem. 68(2), 238.

    Article  Google Scholar 

  37. Dymond, J.H. and K.R. Harris (1992). “The temperature and density dependence of the selfdiffusion coefficient of n-hexadecane”, Mol. Phys. 75(2), 461.

    Article  CAS  Google Scholar 

  38. Marbach, W. and H.G. Hertz (1996). “Self- and mutual diffusion coefficients of some n-alkanes at elevated temperatures and pressures”, Zeitschrift fur Physikalische Chemie, Bd. 193, 19.

    CAS  Google Scholar 

  39. Van Geet, A.L. and A.W. Adamson (1965). “Prediction of diffusion coefficients for liquid n-alkane mixtures”, Industrial Eng. Chem. 57(7), 62.

    Article  Google Scholar 

  40. Kurtz, S.S. Jr. (1954). Physical properties and hydrocarbon structure. In: B.T., Brooks, C.E. Boord, S.S. Kurtz Jr., and L. Schmerling (eds.), Chemistry of Petroleum Hydrocarbons. Reinhold Publishing Corporation, New York, pp. 275–331.

    Google Scholar 

  41. McCall, D.W., D.C. Douglass, and E.W. Anderson (1959). “Diffusion in ethylene polymers. IV”, J. Chem. Phys. 30(3), 771.

    Article  CAS  Google Scholar 

  42. Flory, P.J. (1969). Statistical Mechanics of Chain Molecules. John Wiley and Sons, New York.

    Google Scholar 

  43. Zega, J.A. (1988). Spin lattice relaxation in pure and mixed alkanes and their correlation with thermodynamic and macroscopic transport properties. Master’s Thesis, Rice University.

    Google Scholar 

  44. Zega, J.A., W.V. House, and R. Kobayashi (1989). “A corresponding-states correlation of spin relaxation in normal alkanes”, Physica A 156, 277.

    Article  CAS  Google Scholar 

  45. Rastorguyev, Y.L. and A.S. Keramidi (1974). “Experimental study of the coefficient of dynamic viscosity of n-alkanes at high pressures and various temperatures”, Fluid Mechanics Sov. Res. 3, 156.

    Google Scholar 

  46. Lee, A.L., M.H. Gonzalez, and B.E. Eakin (1966). “Viscosity of methane-n-decane mixtures”, J. Chem. Eng. Data 11(3), 281.

    Article  CAS  Google Scholar 

  47. Bachl, F. and H.-D. Lüdemann (1986). “p, T-dependence of self-diffusion in simple alkanes”, Physica 139, 140B, 100.

    Google Scholar 

  48. Andreatta, G., N. Bostrom, and O.C. Mullins (2005). “High-Q ultrasound determination of the critical nanoaggregate concentration of asphaltenes and the critical micelle concentration of standard surfactants”, Langmuir 21, 2728.

    Article  CAS  Google Scholar 

  49. Buenrostro-Gonzalez, E., H. Groenzin, C. Lira-Galeana, and O.C. Mullins (2001). “The overriding chemical principles that define asphaltenes”, Energy Fuels 15, 972.

    Article  CAS  Google Scholar 

  50. Groenzin, H. and O.C. Mullins (2000). “Molecular size and structure of asphaltenes from various sources”, Energy Fuels 14, 677.

    Article  CAS  Google Scholar 

  51. Groenzin, H. and O.C. Mullins (1999). “Asphaltene molecular size and structure”, J. Phys. Chem. 103, 11237.

    CAS  Google Scholar 

  52. Ralston, C.Y, S. Mitra-Kirtley, and O.C. Mullins (1996). “Small population of one to three fused-aromatic ring moieties in asphaltenes”, Energy Fuels 10, 623.

    Article  CAS  Google Scholar 

  53. Tanaka, R., E. Sato, J. Hunt, R. Winans, S. Sato, and T. Takanohashi (2004). “Characterization of asphaltene aggregates using X-ray diffraction and small-angle X-ray scattering”, Energy Fuels 18, 1118.

    Article  CAS  Google Scholar 

  54. Evdokimov, I., N. Eliseev, and B. Akhimetov (2003). “Initial stages of asphaltene aggregation in dilute crude oil solutions: studies of viscosity and NMR relaxation”, Fuel 82, 817.

    Article  CAS  Google Scholar 

  55. Waldo, G.S., O.C. Mullins, J.E. Penner-Hahn, and C.P. Cramer (1992). “Sulfur speciation in heavy petroleum: determination of the chemical environment of sulfur in asphaltenes”, Fuel 71, 53.

    Article  CAS  Google Scholar 

  56. Sheu, E. (1992). “Polydispersity analysis of scattering data from self-assembled systems”, Phys. Rev. A. 45, 2428.

    Article  Google Scholar 

  57. Ravey, J., G. Decouret, and D. Espinat (1988). “Asphaltene macrostructure by small angle neutron scattering”, Fuel 67, 1560.

    Article  CAS  Google Scholar 

  58. Sheu, E., M.M. De Tar, D.A. Storm, and S. DeCanio (1992). “Aggregation and kinetics of asphaltenes in organic solvents”, Fuel 71, 299.

    Article  CAS  Google Scholar 

  59. Espinat, D., D. Fenistein, L. Barré, D. Frot, and Y. Briolant (2004). “Effects of temperature and pressure on asphaltenes agglomeration in toluene. A light, X-ray, and neutron scattering investigation”, Energy Fuels 18, 1243.

    Article  CAS  Google Scholar 

  60. Fenistein, D. and L. Barré (2001). “Experimental measurement of the mass distribution of petroleum asphaltene aggregates using ultracentrifugation and small-angle X-ray scattering”, Fuel 80, 283.

    Article  CAS  Google Scholar 

  61. Siddiqui, M., M. Ali, and J. Shirokoff (2002). “Use of X-ray diffraction in assessing the aging pattern of asphalt fractions”, Fuel 81, 51.

    Article  CAS  Google Scholar 

  62. Sheu, E. (1996). “Physics of asphaltene micelles and microemulsions-theory and experiment”, J. Phys.: Condens. Matter 8, A125.

    Article  CAS  Google Scholar 

  63. Yudin, I.K., G.L. Nikolaenko, E.E. Gorodetskii, V.I. Kosov, V.R. Melikyan, E. Markhashov et al. (1998). “Mechanisms of asphaltene aggregation in toluene-heptane mixtures”, J. Petroleum Sci. Eng. 20, 297.

    Article  CAS  Google Scholar 

  64. Priyanto, S., G.A. Mansoori, and A. Suwono (2001). “Measurement of property relationships of nanostructure micelles and coacervates of asphaltene in a pure solvent”, Chem. Eng. Sci. 56, 6933.

    Article  CAS  Google Scholar 

  65. Andreatta, G., C.C. Goncalves, G. Buffin, N. Bostrom, C.M. Quintella, F. Arteaga-Larios et al. (2005). “Nanoaggregates and structure-function relations in asphaltenes”, Energy fuels 19(4), 1282–1289.

    Article  CAS  Google Scholar 

  66. Norinaga, K., E. Wargardalam, V. Takasugi, S. Iino, and S. Matsukawa (2001). “Measurement of self-diffusion coefficient of asphaltene in pyridine by pulsed field gradient spin-echo 1H NMR”, Energy Fuels 15, 1317.

    Article  CAS  Google Scholar 

  67. Östlund, J.-A., S.-I. Andersson, and M. Nydén (2001). “Studies of asphaltenes by the use of pulsed-field gradient spin echo NMR”, Fuel 80, 1529.

    Article  Google Scholar 

  68. Östlund, J.-A., M. Nydén, and P. Stilbs (2004). “Component-resolved diffusion in multicomponent mixtures. A case study of high-field PGSE-NMR self-diffusion measurements in asphaltene/naphthenic acid/solvent systems”, Energy Fuels 85, 531.

    Article  Google Scholar 

  69. Östlund, J.-A., M. Nydén, I. Auflem, and J. Sjblom (2003). “Interactions between asphaltenes and naphthenic acids”, Energy Fuels 17, 113.

    Article  Google Scholar 

  70. Östlund, J.-A., P. Wattana, and M. Nydén (2004). “Characterization of fractionated asphaltenes by UV-vis and NMR self-diffusion spectroscopy”, J. Colloid Int. Sci. 271, 372.

    Article  Google Scholar 

  71. Östlund, J.-A., J.-E. Löfroth, K. Holmberg, M. Nydén, and H. Fogler (2002). “Flocculation behavior of asphaltenes in solvent/nonsolvent system”, J. Colloid Int. Sci. 253, 150.

    Article  Google Scholar 

  72. Mullins, O.C. (1988). Optical interrogation of aromatic moieties in crude oils and asphaltenes. Chap. II. In: O.C. Mullins and E.Y. Sheu (eds.), Structures and Dynamics of Asphaltenes, Plenum, New York, pp. 21–77.

    Google Scholar 

  73. Groenzin, H. and O.C. Mullins (2003). “Molecular size of asphaltene solubility fractions”, Energy Fuels 17, 498.

    Article  CAS  Google Scholar 

  74. Eidmann, G., R. Savelsberg, P. Blümler, and B. Blümich (1996). “The NMR mouse, a mobile universal surface explorer”, J. Magn. Reson. A 122, 104.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Freed, D.E., Lisitza, N.V., Sen, P.N., Song, YQ. (2007). Molecular Composition and Dynamics of Oils from Diffusion Measurements. In: Mullins, O.C., Sheu, E.Y., Hammami, A., Marshall, A.G. (eds) Asphaltenes, Heavy Oils, and Petroleomics. Springer, New York, NY. https://doi.org/10.1007/0-387-68903-6_11

Download citation

Publish with us

Policies and ethics