Skip to main content

Compatible Discretizations for Eigenvalue Problems

  • Conference paper
Compatible Spatial Discretizations

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 142))

Abstract

The choice of discrete spaces for a variationally posed symmetric and compact eigenvalue problem corresponding a source problem is discussed. Any standard Galerkin discretization space that is convergent for the source problem automatically performs well for the eigenvalue problem. On the other hand, mixed discretizations that are convergent (satisfying the classical Brezzi conditions) exhibit spurious low frequency eigenmodes. Examples of discretizations with spurious modes are presented. Moreover, necessary and sufficient conditions on mixed discretization are established for the (ordered) discrete eigenvalues to converge to the corresponding continuous eigenvalues. The theory is applied to the determination of band gaps for photonic crystals and evolution problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Amrouche, C. Bernardi, M. Dauge, and V. Girault, Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., 21 (1998), pp. 823–864.

    Article  MathSciNet  Google Scholar 

  2. D.N. Arnold, Differential complexes and numerical stability, in Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), Beijing, 2002, Higher Ed. Press, pp. 137–157.

    Google Scholar 

  3. I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, P. Ciarlet and J. Lions, eds., vol. II, Elsevier Science Publishers B.V., North Holland, 1991, pp. 641–788.

    Google Scholar 

  4. D. Boffi, Fortin operator and discrete compactness for edge elements, Numer. Math., 87 (2000), pp. 229–246.

    Article  MathSciNet  Google Scholar 

  5. —, A note on the de Rham complex and a discrete compactness property, Appl. Math. Lett., 14 (2001), pp. 33–38.

    Article  MathSciNet  Google Scholar 

  6. D. Boffi, F. Brezzi, and L. Gastaldi, On the convergence of eigenvalues for mixed formulations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997), pp. 131–154 (1998). Dedicated to Ennio De Giorgi.

    MathSciNet  Google Scholar 

  7. —, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form, Math. Comp., 69 (2000), pp. 121–140.

    Article  MathSciNet  Google Scholar 

  8. D. Boffi, A. Buffa, and L. Gastaldi, Convergence analysis for hyperbolic evolution problems in mixed form. submitted.

    Google Scholar 

  9. D. Boffi, M. Conforti, and L. Gastaldi, Modified edge finite elements for photonic crystals. submitted.

    Google Scholar 

  10. D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia, Computational models of electromagnetic resonators: analysis of edge element approximation, SIAM J. Numer. Anal., 36 (1999), pp. 1264–1290.

    Article  MathSciNet  Google Scholar 

  11. D. Boffi and L. Gastaldi, Interpolation estimates for edge finite elements and application to band gap computation. Applied Numerical Mathematics, to appear.

    Google Scholar 

  12. D. Boffi and L. Gastaldi, Analysis of finite element approximation of evolution problems in mixed form, SIAM J. Numer. Anal., 42 (2004), pp. 1502–1526 (electronic).

    Article  MathSciNet  Google Scholar 

  13. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol. 15 of Springer Series in Computational Mathematics, Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  14. S. Caorsi, P. Fernandes, and M. Raffetto, Spurious-free approximations of electromagnetic eigenproblems by means of Nedelec-type elements, M2AN Math. Model. Numer. Anal., 35 (2001), pp. 331–354.

    Article  MathSciNet  Google Scholar 

  15. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Ration. Mech. Anal., 151 (2000), pp. 221–276.

    Article  MathSciNet  Google Scholar 

  16. L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements, Comput. Methods Appl. Mech. Engrg., 152 (1998), pp. 103–124. Symposium on Advances in Computational Mechanics, Vol. 5 (Austin, TX, 1997).

    Article  MathSciNet  Google Scholar 

  17. D.C. Dobson, J. Gopalakrishnan, and J. E. Pasciak, An efficient method for band structure calculations in 3D photonic crystals, J. Comput. Phys., 161 (2000), pp. 668–679.

    Article  MathSciNet  Google Scholar 

  18. G.J. Fix, M.D. Gunzburger, and R.A. Nicolaides, On mixed finite element methods for first-order elliptic systems, Numer. Math., 37 (1981), pp. 29–48.

    Article  MathSciNet  Google Scholar 

  19. M. Fortin, An analysis of the convergence of mixed finite element methods, R.A.I.R.O., Anal. Numer., 11 (1977), pp. 341–354.

    MathSciNet  Google Scholar 

  20. R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer., 11 (2002), pp. 237–339.

    Article  MathSciNet  Google Scholar 

  21. T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition.

    Google Scholar 

  22. F. Kikuchi, Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism, in Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), vol. 64, 1987, pp. 509–521.

    MathSciNet  Google Scholar 

  23. P. Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003.

    Google Scholar 

  24. H.L. Royden, Real analysis, Macmillan Publishing Company, New York, second ed., 1988.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Boffi, D. (2006). Compatible Discretizations for Eigenvalue Problems. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds) Compatible Spatial Discretizations. The IMA Volumes in Mathematics and its Applications, vol 142. Springer, New York, NY. https://doi.org/10.1007/0-387-38034-5_6

Download citation

Publish with us

Policies and ethics