Skip to main content

Numerical Convergence of the MPFA O-Method for General Quadrilateral Grids in Two and Three Dimensions

  • Conference paper
Compatible Spatial Discretizations

Abstract

This paper presents the MPFA O-method for quadrilateral grids, and gives convergence rates for the potential and the normal velocities. The convergence rates are estimated from numerical experiments. If the potential is in H 1+α, α>0, the found L 2 convergence order on rough grids in physical space is min{2, 2α} for the potential and min{1, α} for the normal velocities. For smooth grids the convergence order for the normal velocities increases to min{2,α}. The O-method is exact for uniform flow on rough grids. This also holds in three dimensions, where the cells may have nonplanar surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Aavatsmark, Introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci. 6 (2002), 405–432.

    Article  MathSciNet  Google Scholar 

  2. I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth, Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media, J. Comput. Phys. 127 (1996), 2–14.

    Article  Google Scholar 

  3. I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth, A class of discretization methods for structured and unstructured grids in anisotropic, inhomogeneous media, Proc. of the 5th European Conf. on the Mathematics of Oil Recovery, eds. Z.E. Heinemann and M. Kriebernegg, Leoben, Austria, 1996, pp. 157–166.

    Google Scholar 

  4. I. Aavatsmark, T. Barkve, and T. Mannseth, Control-volume discretization methods for 3D quadrilateral grids in inhomogeneous, anisotropic reservoirs, SPE J. 3 (1998), 146–154.

    Google Scholar 

  5. I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods, SIAM J. Sci. Comput. 19 (1998), 1700–1716.

    Article  MathSciNet  Google Scholar 

  6. I. Aavatsmark, T. Barkve, Ø. Bøe, and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part II: Discussion and numerical results, SIAM J. Sci. Comput. 19 (1998), 1717–1736.

    Article  MathSciNet  Google Scholar 

  7. M.G. Edwards, Unstructured, control-volume distributed, full-tensor finite-volume schemes with Bow based grids, Comput. Geosci. 6 (2002), 433–452.

    Article  MathSciNet  Google Scholar 

  8. M.G. Edwards and C.F. Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci. 2 (1998), 259–290.

    Article  MathSciNet  Google Scholar 

  9. G.T. Eigestad and R.A. Klausen, On the convergence of the multi-point flux approximation O-method; Numerical experiments for discontinuous permeability, To appear in Numer. Methods Partial Diff. Eqns. 21 (2005).

    Google Scholar 

  10. J. Hyman, M. Shashkov, and S. Steinberg, The numerical solution of diffusion problems in strongly heterogeneous non-isotropic materials, J. Comput. Phys. 132 (1997), 130–148.

    Article  MathSciNet  Google Scholar 

  11. I.D. Mishev, Nonconforming finite volume methods, Comput. Geosci. 6 (2002), 253–268.

    Article  MathSciNet  Google Scholar 

  12. R.L. Naff, T.F. Russel, and J.D. Wilson, Shape functions for velocity interpolation in general hexahedral cells, Comput. Geosci. 6 (2002), 285–314.

    Article  MathSciNet  Google Scholar 

  13. J.M. Nordbotten and I. Aavatsmark, Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media, Comput. Geosci. 9 (2005), 61–72.

    Article  MathSciNet  Google Scholar 

  14. B. Rivière, M.F. Wheeler, and K. Banaś, Discontinuous Galerkin method applied to a single phase flow in porous media, Comput. Geosci. 4 (2000) 337–349.

    Article  Google Scholar 

  15. M. Shashkov and S. Steinberg, Solving diffusion equations with rough coefficients in rough grids, J. Comput. Phys. 129 (1996), 383–405.

    Article  MathSciNet  Google Scholar 

  16. G. Strang and G.J. Fix, An analysis of the finite element method, Wiley, New York, 1973.

    MATH  Google Scholar 

  17. S. Verma and K. Aziz, Two-and three-dimensional flexible grids for reservoir simulation, Proc. of the 5th European Conf. on the Mathematics of Oil Recovery, eds. Z.E. Heinemann and M. Kriebernegg, Leoben, Austria, 1996, pp. 143–156.

    Google Scholar 

  18. A.F. Ware, A.K. Parrott, and C. Rogers, A finite volume discretization for porous media flows governed by non-diagonal permeability tensors, Proc. of CFD95, eds. P.A. Thibault and D.M. Bergeron, Banff, Canada, 1995, pp. 357–364.

    Google Scholar 

  19. J.A. Wheeler, M.F. Wheeler, and I. Yotov, Enhanced velocity mixed finite element methods for Bow in multiblock domains, Comput. Geosci. 6 (2002), 315–332.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Aavatsmark, I., Eigestad, G.T., Klausen, R.A. (2006). Numerical Convergence of the MPFA O-Method for General Quadrilateral Grids in Two and Three Dimensions. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds) Compatible Spatial Discretizations. The IMA Volumes in Mathematics and its Applications, vol 142. Springer, New York, NY. https://doi.org/10.1007/0-387-38034-5_1

Download citation

Publish with us

Policies and ethics