Skip to main content

Tight Junctions and the Regulation of Epithelial Cell Proliferation and Gene Expression

  • Chapter
Tight Junctions

Abstract

Cell interactions with the extracellular matrix and neighboring cells regulate epithelial cell proliferation and differentiation. Tight Junctions are the most apical cell-cell junctions of epithelial cells and evidence indicates that they participate in the suppression of cell proliferation and stimulation of differentiation. Some tight junction components are expressed at increased levels in differentiated versus proliferating cells; and their down-regulation has been linked to epithelial-mesenchymal transition as well as cancer. Other tight junction proteins are also found in the nucleus of proliferating cells and have been linked to the regulation of cell proliferation, transcription and RNA processing. Therefore, it seems that the accumulation of proteins at forming tight junctions is related to signaling pathways that control cell growth arrest and differentiation. We propose a model in which the assembly state of tight junctions is used as a sensor for cell proliferation and density. When cell density increases, the expression levels of tight junction proteins that are inhibitors of proliferation increase and they become stabilized at the forming junctions, resulting in the suppression of proliferation promoting signaling pathways. Furthermore, the tight junction signaling pathways in connection with signals from other cell-cell and extracellular matrix interactions ensure that epithelial cells stop to proliferate and begin to differentiate.

E. Kavanagh and A. Tsapara contributed equality to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 2002; 4(4):E101–108.

    Article  PubMed  CAS  Google Scholar 

  2. Green KJ, Gaudry CA. Are desmosomes more than tethers for intermediate filaments? Nat Rev Mol Cell Biol 2000; 1(3):208–216.

    Article  PubMed  CAS  Google Scholar 

  3. Garrod DR, Merritt AJ, Nie Z. Desmosomal cadherins. Out Opin Cell Biol 2002; 14(5):537–545.

    Article  CAS  Google Scholar 

  4. Anderson JM. Molecular structure of tight junctions and their role in epithelial transport. News Physiol Sci 2001; 16:126–130.

    PubMed  CAS  Google Scholar 

  5. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2001; 2:286–293.

    Article  CAS  Google Scholar 

  6. Cereijido M, Shoshani L, Contreras RG. Molecular physiology and pathophysiology of tight junctions. I. Biogenesis of tight junctions and epithelial polarity. Am J Physiol 2000; 279(3):G477–482.

    CAS  Google Scholar 

  7. Fanning AS, Ma TY, Anderson JM. Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J 2002; 16(13):1835–1837.

    PubMed  CAS  Google Scholar 

  8. Woods A, Couchman JR. Syndecan-4 and focal adhesion function. Curr Opin Cell Biol 2001; 13(5):578–583.

    Article  PubMed  CAS  Google Scholar 

  9. Balda MS, Matter K. Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol 2003; 13(6):310–318.

    Article  PubMed  CAS  Google Scholar 

  10. Damsky CH, Ilic D. Integrin signaling: It’s where the action is. Curr Opin Cell Biol 2002; 14(5):594–602.

    Article  PubMed  CAS  Google Scholar 

  11. Ben-Ze’ev A, Geiger B. Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer. Curr Opin Cell Biol 1998; 10(5):629–639.

    Article  PubMed  CAS  Google Scholar 

  12. Assoian RK, Schwartz MA. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr Opin Genet Dev 2001; 11(1):48–53.

    Article  PubMed  CAS  Google Scholar 

  13. Gottardi CJ, Gumbiner BM. Adhesion signaling: How β-catenin interacts with its partners. Curr Biol 2001; 11(19):R792–794.

    Article  PubMed  CAS  Google Scholar 

  14. Seidensticker MJ, Behrens J. Biochemical interactions in the wnt pathway. Biochim Biophys Acta 2000; 1495(2):168–182.

    Article  PubMed  CAS  Google Scholar 

  15. Anderson JM, Van Itallie CM, Fanning AS. Setting up a selective barrier at the apical junction complex. Curr Opin Cell Biol 2004; 16(2):140–145.

    Article  PubMed  CAS  Google Scholar 

  16. Dejana E, Lampugnani MG, Martinez-Estrada O et al. The molecular organization of endothelial junctions and their functional role in vascular morphogenesis and permeability. Int J Dev Biol 2000; 44(6):743–748.

    PubMed  CAS  Google Scholar 

  17. Bazzoni G. The JAM family of junctional adhesion molecules. Curr Opin Cell Biol 2003; 15(5):525–530.

    Article  PubMed  CAS  Google Scholar 

  18. Lemmers C, Michel D, Lane-Guermonprez L et al. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 2004; 15(3):1324–1333.

    Article  PubMed  CAS  Google Scholar 

  19. Roh MH, Fan S, Liu CJ et al. The Crumbs3-Pals1 complex participates in the establishment of polarity in mammalian epithelial cells. J Cell Sci 2003; 116 (Pt 14):2895–2906.

    Article  PubMed  CAS  Google Scholar 

  20. Li D, Mrsny RJ. Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol 2000; 148(4):791–800.

    Article  PubMed  CAS  Google Scholar 

  21. Saitou M, Furuse M, Sasaki H et al. Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 2000; 11(12):4131–4142.

    PubMed  CAS  Google Scholar 

  22. Tiwari-Woodruff SK, Buznikov AG, Vu TQ et al. OSP/claudin-11 forms a complex with a novel member of the tetraspanin super family and β1 integrin and regulates proliferation and migration of oligodendrocytes. J Cell Biol 2001; 153(2):295–305.

    Article  PubMed  CAS  Google Scholar 

  23. Miwa N, Furuse M, Tsukita S et al. Involvement of claudin-1 in the β-catenin/Tcf signaling pathway and its frequent upregulation in human colorectal cancers. Oncol Res 2000; 12(11’12):469–476.

    CAS  Google Scholar 

  24. Long H, Crean CD, Lee WH et al. Expression of Clostridium perfringens enterotoxin receptors claudin-3 and claudin-4 in prostate cancer epithelium. Cancer Res 2001; 61(21):7878–7881.

    PubMed  CAS  Google Scholar 

  25. Michl P, Barth C, Buchholz M et al. Claudin-4 expression decreases invasiveness and metastatic potential of pancreatic cancer. Cancer Res 2003; 63(19):6265–6271.

    PubMed  CAS  Google Scholar 

  26. Singh AB, Harris RC. Epidermal growth factor receptor activation differentially regulates claudin expression and enhances transepithelial resistance in Madin-Darby canine kidney cells. J Biol Chem 2004; 279(5):3543–3552.

    Article  PubMed  CAS  Google Scholar 

  27. Ohkubo T, Ozawa M. The transcription factor Snail downregulates the tight junction components independently of E-cadherin downregulation. J Cell Sci 2004; 117 (Pt 9):1675–1685.

    Article  PubMed  CAS  Google Scholar 

  28. Ikenouchi J, Matsuda M, Furuse M et al. Regulation of tight junctions during the epithelium-mesenchyme transition: Direct repression of the gene expression of claudins/occluding by Snail. J Cell Sci 2003;116 (Pt 10):1959–1967.

    Article  PubMed  CAS  Google Scholar 

  29. Roh MH, Margolis B. Composition and function of PDZ protein complexes during cell polarization. Am J Physiol Renal Physiol 2003; 285(3):F377–387.

    PubMed  Google Scholar 

  30. Ebnet K, Aurrand-Lions M, Kuhn A et al. The junctional adhesion molecule (JAM) family members JAM-2 and JAM-3 associate with the cell polarity protein PAR-3: A possible role for JAMs in endothelial cell polarity. J Cell Sci 2003; 116(19):3879–3891.

    Article  PubMed  CAS  Google Scholar 

  31. D’Atri F, Citi S. Molecular complexity of vertebrate tight junctions. Mol Membrane Biol 2002; 19:103–112.

    Article  CAS  Google Scholar 

  32. Gonzalez-Mariscal L, Betanzos A, Nava P et al. Tight junction proteins. Prog Biophys Mol Biol 2003; 81(1):1–44.

    Article  PubMed  CAS  Google Scholar 

  33. Matter K, Balda MS. Signalling to and from tight junctions. Nat Rev Mol Cell Biol 2003; 4(3):225–236.

    Article  PubMed  CAS  Google Scholar 

  34. Schneeberger EE, Lynch RD. The tight junction: A multifunctional complex. Am J Physiol Cell Physiol 2004; 286(6):C1213–1228.

    Article  PubMed  CAS  Google Scholar 

  35. Itoh M, Nagafuchi A, Yonemura S et al. The 220-kD protein colocalizing with cadherins in nonepithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 1993; 121(3):491–502.

    Article  PubMed  CAS  Google Scholar 

  36. Willott E, Balda MS, Fanning AS et al. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci USA 1993; 90:7834–7838.

    Article  PubMed  CAS  Google Scholar 

  37. Fanning AS, Anderson JM. Protein modules as organizers of membrane structure. Curr Opin Cell Biol 1999; 11(4):432–439.

    Article  PubMed  CAS  Google Scholar 

  38. Anderson JM, Balda MS, Faming A. The structure and regulation of tight junctions. Curr Opin Cell Biol 1993; 5:772–778.

    Article  PubMed  CAS  Google Scholar 

  39. Tsukita S, Furuse M, Itoh M. Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 1999; 11:628–633.

    Article  PubMed  CAS  Google Scholar 

  40. Dimitratos SD, Woods DF, Stathakis DG et al. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Bioessays 1999; 21(11):912–921.

    Article  PubMed  CAS  Google Scholar 

  41. Takahisa M, Togashi S, Suzuki T et al. The Drosophila tamou gene, a component of the activating pathway of extramacrochaetae expression, encodes a protein homologous to mammalian cell-cell junction-associated protein ZO-1. Genes Dev 1996; 10(14):1783–1795.

    PubMed  CAS  Google Scholar 

  42. Chen CM, Freedman JA, Bettler Jr DR et al. Polychaetoid is required to restrict segregation of sensory organ precursors from proneural clusters in Drosophila. Mech Dev 1996; 57(2):215–227.

    Article  PubMed  CAS  Google Scholar 

  43. Cao Z, Wu HK, Bruce A et al. Detection of differentially expressed genes in healing mouse corneas using cDNA Microarrays. Invest Ophthalmol Vis Sci 2002; 43:2897–2904.

    PubMed  Google Scholar 

  44. Mann B, Gelos M, Siedow A et al. Target genes of β-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 1999; 96(4):1603–1608.

    Article  PubMed  CAS  Google Scholar 

  45. Hoover KB, Liao SY, Bryant PJ. Loss of the tight junction MAGUK ZO-1 in breast cancer: Relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 1998; 153:1767–1773.

    PubMed  CAS  Google Scholar 

  46. Balda MS, Garrett MD, Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol 2003; 160(3):423–432.

    Article  PubMed  CAS  Google Scholar 

  47. Chlenski A, Ketels KV, Korovaitseva GI et al. Organization and expression of the human zo-2 gene (tjp-2) in normal and neoplastic tissues. Biochim Biophys Acta 2000; 1493(3):319–324.

    PubMed  CAS  Google Scholar 

  48. Gottardi CJ, Arpin M, Fanning AS et al. The junction-associated protein, zonula occludens-1, localizes to the nucleus before the maturation and during the remodeling of cell-cell contacts. Proc Natl Acad Sci USA 1996; 93:10779–10784.

    Article  PubMed  CAS  Google Scholar 

  49. Islas S, Vega J, Ponce L et al. Nuclear localization of the tight junction protein ZO-2 in epithelial cells. Exp Cell Res 2002; 274(1):138–148.

    Article  PubMed  CAS  Google Scholar 

  50. Balda MS, Matter K. The tight junction protein ZO-1 and an interacting transcription factor regulate ErbB-2 expression. EMBO J 2000; 19(9):2024–2033.

    Article  PubMed  CAS  Google Scholar 

  51. Glaunsinger BA, Weiss RS, Lee SS et al. Link of the unique oncogenic properties of adenovirus type 9 E4-ORF1 to a select interaction with the candidate tumor suppressor protein ZO-2. EMBO J 2001; 20(20):5578–5586.

    Article  PubMed  CAS  Google Scholar 

  52. Reichert M, Muller T, Hunziker W. The PDZ domains of zonula occludens-1 induce an epithelial to mesenchymal transition of Madin-Darby canine kidney I cells. Evidence for a role of β-catenin/Tcf/Lef signaling. J Biol Chem 2000; 275(13):9492–9500.

    Article  PubMed  CAS  Google Scholar 

  53. Traweger A, Fuchs R, Krizbai IA et al. The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J Biol Chem 2003; 278(4):2692–2700.

    Article  PubMed  CAS  Google Scholar 

  54. Lee SS, Glaunsinger B, Mantovani F et al. Multi-PDZ domain protein MUPP1 is a cellular target for both adenovirus E4-ORF1 and high-risk papillomavirus type 18 E6 oncoproteins. J Virol 2000; 74(20):9680–9693.

    Article  PubMed  CAS  Google Scholar 

  55. Glaunsinger BA, Lee SS, Thomas M et al. Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 2000; 19(46):5270–5280.

    Article  PubMed  CAS  Google Scholar 

  56. Betanzos A, Huerta M, Lopez-Bayghen E et al. The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 2004; 292(1):51–66.

    Article  PubMed  CAS  Google Scholar 

  57. Wu Y, Dowbenko D, Spencer S et al. Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 2000; 275(28):21477–21485.

    Article  PubMed  CAS  Google Scholar 

  58. Benais-Pont G, Punn A, Flores-Maldonado C et al. Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J Cell Biol 2003; 160(5):729–740.

    Article  PubMed  CAS  Google Scholar 

  59. Sahai E, Marshall CJ. RHO-GTPases and cancer. Nat Rev Cancer 2002; 2(2):133–142.

    Article  PubMed  Google Scholar 

  60. Pruitt K, Der CJ. Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett 2001; 171(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  61. Jaffe AB, Hall A. Rho GTPases in transformation and metastasis. Adv Cancer Res 2002; 84:57–80.

    PubMed  CAS  Google Scholar 

  62. Nakamura T, Blechman J, Tada S et al. huASH1 protein, a putative transcription factor encoded by a human homologue of the Drosophila ash1 gene, localizes to both nuclei and cell-cell tight junctions. Proc Natl Acad Sci USA 2000; 97(13):7284–7289.

    Article  PubMed  CAS  Google Scholar 

  63. Beisel C, Imhof A, Greene J et al. Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 2002; 419(6909):857–862.

    Article  PubMed  CAS  Google Scholar 

  64. Keon BH, Schäfer S, Kuhn C et al. Symplekin, a novel type of tight junction plaque protein. J Cell Biol 1996; 134:1003–1018.

    Article  PubMed  CAS  Google Scholar 

  65. Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 2000; 20(5):1515–1525.

    Article  PubMed  CAS  Google Scholar 

  66. Hofmann I, Schnolzer M, Kaufmann I et al. Symplekin, a constitutive protein of karyo-and cytoplasmic particles involved in mRNA biogenesis in Xenopus laevis oocytes. Mol Biol Cell 2002; 13(5):1665–1676.

    Article  PubMed  CAS  Google Scholar 

  67. Xing H, Mayhew CN, Cullen KE et al. HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin. J Biol Chem 2004; 279(11):10551–10555.

    Article  PubMed  CAS  Google Scholar 

  68. Kohno K, Izumi H, Uchiumi T et al. The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 2003; 25(7):691–698.

    Article  PubMed  CAS  Google Scholar 

  69. Gallia GL, Johnson EM, Khalili K. Puralpha: A multifunctional single-stranded DNA-and RNA-binding protein. Nucleic Acids Res 2000; 28(17):3197–3205.

    Article  PubMed  CAS  Google Scholar 

  70. Ekholm SV, Reed SI. Regulation of G(1) cyclin-dependent kinases in the mammalian cell cycle. Curr Opin Cell Biol 2000; 12(6):676–684.

    Article  PubMed  CAS  Google Scholar 

  71. Ortega S, Malumbres M, Barbacid M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 2002; 1602(1):73–87.

    PubMed  CAS  Google Scholar 

  72. Bringold F, Serrano M. Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 2000; 35(3):317–329.

    Article  PubMed  CAS  Google Scholar 

  73. Sherr CJ. The Pezcoller lecture: Cancer cell cycles revisited. Cancer Res 2000; 60(14):3689–3695.

    PubMed  CAS  Google Scholar 

  74. Wang H, Iakova P, Wilde M et al. C/EBPα arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell 2001; 8(4):817–828.

    Article  PubMed  CAS  Google Scholar 

  75. Zhang JM, Zhao X, Wei Q et al. Direct inhibition of G(1) cdk kinase activity by MyoD promotes myoblast cell cycle withdrawal and terminal differentiation. EMBO J 1999; 18(24):6983–6993.

    Article  PubMed  CAS  Google Scholar 

  76. Li J, Joo SH, Tsai MD. An NF-κB-specific inhibitor, iκBα, binds to and inhibits cyclin-dependent kinase 4. Biochemistry 2003; 42(46):13476–1348

    Article  PubMed  CAS  Google Scholar 

  77. Malumbres M, Barbacid M. To cycle or not to cycle: A critical decision in cancer. Nat Rev Cancer 2001; 1:222–231.

    Article  PubMed  CAS  Google Scholar 

  78. Gumbiner B, Lowenkopf T, Apatira D. Identification of a 160-kDa polypeptide that binds to the tight junction protein ZO-1. Proc Natl Acad Sci USA 1991; 88(8):3460–3464.

    Article  PubMed  CAS  Google Scholar 

  79. Troyer KL, Lee DC. Regulation of mouse mammary gland development and tumorigenesis by the ERBB signaling network. J Mammary Gland Biol Neoplasia 2001; 6(1):7–21.

    Article  PubMed  CAS  Google Scholar 

  80. Citri A, Skaria KB, Yarden Y. The deaf and the dumb: The biology of ErbB-2 and ErbB-3. Exp Cell Res 2003; 284(1):54–65.

    Article  PubMed  CAS  Google Scholar 

  81. Garratt AN, Ozcelik C, Birchmeier C. ErbB2 pathways in heart and neural diseases. Trends Cardiovasc Med 2003; 13(2):80–86.

    Article  PubMed  CAS  Google Scholar 

  82. Kornilova ES, Taverna D, Hoeck W et al. Surface expression of erbB-2 protein is post-transcriptionally regulated in mammary epithelial cells by epidermal growth factor and by the culture density. Oncogene 1992; 7(3):511–519.

    PubMed  CAS  Google Scholar 

  83. Park SK, Miller R, Krane I et al. The erbB2 gene is required for the development of terminally differentiated spinal cord oligodendrocytes. J Cell Biol 2001; 154(6):1245–1258.

    Article  PubMed  CAS  Google Scholar 

  84. Khoury H, Dankort DL, Sadekova S et al. Distinct tyrosine autophosphorylation sites mediate induction of epithelial mesenchymal like transition by an activated ErbB-2/Neu receptor. Oncogene 2001; 20(7):788–799.

    Article  PubMed  CAS  Google Scholar 

  85. Janda E, Litos G, Grunert S et al. Oncogenic Ras/Her-2 mediate hyperproliferation of polarized epithelial cells in 3D cultures and rapid tumor growth via the PI3K pathway. Oncogene 2002; 21(33):5148–5159.

    Article  PubMed  CAS  Google Scholar 

  86. Schwartz MA, Ginsberg MH. Networks and crosstalk: Integrin signalling spreads. Nat Cell Biol 2002; 4(4):E65–68.

    Article  PubMed  CAS  Google Scholar 

  87. Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol 2003; 19:173–206.

    Article  PubMed  CAS  Google Scholar 

  88. Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 2004; 303(5663):1483–1487.

    Article  PubMed  CAS  Google Scholar 

  89. Howe AK, Aplin AE, Juliano RL. Anchorage-dependent ERK signaling—mechanisms and consequences. Curr Opin Genet Dev 2002; 12(1):30–35.

    Article  PubMed  CAS  Google Scholar 

  90. Zhao J, Pestell R, Guan JL. Transcriptional activation of cyclin D1 promoter by FAX contributes to cell cycle progression. Mol Biol Cell 2001; 12(12):4066–4077.

    PubMed  CAS  Google Scholar 

  91. Zhao J, Bian ZC, Yee K et al. Identification of transcription factor KLF8 as a downstream target of focal adhesion kinase in its regulation of cyclin D1 and cell cycle progression. Mol Cell 2003; 11(6):1503–1515.

    Article  PubMed  CAS  Google Scholar 

  92. Yoganathan N, Yee A, Zhang Z et al. Integrin-linked kinase, a promising cancer therapeutic target: Biochemical and biological properties. Pharmacol Ther 2002; 93(2–3):233–242.

    Article  PubMed  CAS  Google Scholar 

  93. Behrens J. Control of β-catenin signaling in tumor development. Ann NY Acad Sci 2000; 910:21–33, discussion 33–25.

    Article  PubMed  CAS  Google Scholar 

  94. Danen EH, Yamada KM. Fibronectin, integrins, and growth control. J Cell Physiol 2001; 189(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  95. Savagner P. Leaving the neighborhood: Molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 2001; 10:912–923.

    Article  Google Scholar 

  96. Mercer JA. Intercellular junctions: Downstream and upstream of Ras? Semin Cell Dev Biol 2000; 11(4):309–314.

    Article  PubMed  CAS  Google Scholar 

  97. Vincent-Salomon A, Thiery JP. Host microenvironment in breast cancer development: Epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res 2003; 5(2):101–106.

    Article  PubMed  CAS  Google Scholar 

  98. Coleman ML, Marshall CJ, Olson MF. RAS and RHO GTPases in G1-phase cell-cycle regulation. Nat Rev Mol Cell Biol 2004; 5(5):355–366.

    Article  PubMed  CAS  Google Scholar 

  99. Amanatullah DF, Zafonte BT, Albanese C et al. Ras regulation of cyclin D1 promoter. Methods Enzymol 2001; 333:116–127.

    Article  PubMed  CAS  Google Scholar 

  100. Montesano R, Soriano JV, Hosseini G et al. Constitutively active mitogen-activated protein kinase kinase MEK1 disrupts morphogenesis and induces an invasive phenotype in Madin-Darby canine kidney epithelial cells. Cell Growth Differ 1999; 10(5):317–332.

    PubMed  CAS  Google Scholar 

  101. Lu Q, Paredes M, Zhang J et al. Basal extracellular signal-regulated kinase activity modulates cell-cell and cell-matrix interactions. Mol Cell Biol 1998; 18(6):3257–3265.

    PubMed  CAS  Google Scholar 

  102. Chen Y, Lu Q, Schneeberger EE et al. Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin-Darby canine kidney cells. Mol Biol Cell 2000; 11(3):849–862.

    PubMed  CAS  Google Scholar 

  103. Yamamoto T, Harada N, Kano K et al. The ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 1997; 139:785–795.

    Article  PubMed  CAS  Google Scholar 

  104. Ebnet K, Schulz CU, Meyer Zu Brickwedde MK et al. Junctional adhesion molecule interacts with the PDZ domain-containing proteins AF-6 and ZO-1. J Biol Chem 2000; 275(36):27979–27988.

    PubMed  CAS  Google Scholar 

  105. Mandai K, Nakanishi H, Satoh A et al. Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction. J Cell Biol 1997; 139(2):517–528.

    Article  PubMed  CAS  Google Scholar 

  106. Takai Y, Nakanishi H. Nectin and afadin: Novel organizers of intercellular junctions. J Cell Sci 2003; H6 (Pt 1):17–27.

    Article  CAS  Google Scholar 

  107. Zhadanov AB, Provance Jr DW, Speer CA et al. Absence of the tight junctional protein AF-6 disrupts epithelial cell-cell junctions and cell polarity during mouse development. Curr Biol 1999; 9(16):880–888.

    Article  PubMed  CAS  Google Scholar 

  108. Yart A, Chap H, Raynal P. Phosphoinositide 3-kinases in lysophosphatidic acid signaling: Regulation and cross-talk with the Ras/mitogen-activated protein kinase pathway. Biochim Biophys Acta 2002; 1582(1–3):107–111.

    PubMed  CAS  Google Scholar 

  109. Bakin AV, Tomlinson AK, Bhowmick NA et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275(47):36803–36810.

    Article  PubMed  CAS  Google Scholar 

  110. Burgering BM, Kops GJ. Cell cycle and death control: Long live Forkheads. Trends Biochem Sci 2002; 27(7):352–360.

    Article  PubMed  CAS  Google Scholar 

  111. Nusrat A, Chen JA, Foley CS et al. The coiled-coil domain of occludin can act to organize structural and functional elements of the epithelial tight junction. J Biol Chem 2000; 275(38):298l6–29822.

    Article  Google Scholar 

  112. Sheth P, Basuroy S, Li C et al. Role of phosphatidylinositol 3-kinase in oxidative stress-induced disruption of tight junctions. J Biol Chem 2003; 278(49):49239–49245.

    Article  PubMed  CAS  Google Scholar 

  113. Mills GB, Lu Y, Fang X et al. The role of genetic abnormalities of PTEN and the phosphatidylinositol 3-kinase pathway in breast and ovarian tumorigenesis, prognosis, and therapy. Semin Oncol 2001; 28(5 Suppl 16):125–141.

    Article  PubMed  CAS  Google Scholar 

  114. Stevenson BR, Siliciano JD, Mooseker MS et al. Identification of ZO-1: A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 1986; 103:755–766.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kavanagh, E., Tsapara, A., Matter, K., Balda, M.S. (2006). Tight Junctions and the Regulation of Epithelial Cell Proliferation and Gene Expression. In: Tight Junctions. Springer, Boston, MA. https://doi.org/10.1007/0-387-36673-3_8

Download citation

Publish with us

Policies and ethics