Skip to main content

fMRI of the Auditory Cortex

  • Chapter
Functional MRI

Abstract

During the last two decades, auditory neuroscience has made significant progress in understanding the functional organization of the auditory system in both normally hearing listeners and patients with sensorineural hearing impairments. Modern brain imaging techniques have made an enormous contribution to that progress by enabling the in vivo study of human central auditory function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kaas JH, Hackett TA. Subdivisions of auditory cortex and levels of pro-cessing in primates. Audiol Neurootol. 1998;3:73-85.

    Article  PubMed  CAS  Google Scholar 

  2. Kaas JH, Hackett TA. Subdivisions of auditory cortex and processingstreams in primates. Proc Natl Acad Sci. 2000;97:11793-11799.

    Google Scholar 

  3. Galaburda AM, Sanides F Cytoarchitectonic organisation of the human auditory cortex. J Comp Neurol. 1980;221:169-184.

    Google Scholar 

  4. Rivier F, Clarke S. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage. 1997;6:288-304.

    Article  PubMed  CAS  Google Scholar 

  5. Wallace MN, Johnston PW, Palmer AR. Histochemical identification of cor-tical areas in the auditory region of the human brain. Exp. Brain Res. 2002;143:499-508.

    Article  PubMed  CAS  Google Scholar 

  6. Rauschecker JP, Tian B, Hauser M. Processing of complex sounds in themacaque nonprimary auditory cortex. Science. 1995;268:111-114.

    Article  PubMed  CAS  Google Scholar 

  7. Rauschecker JP, Tian B, Pons T, Mishkin M. Serial and parallel processingin rhesus monkey auditory cortex. J Comp Neurol. 1997;382:89-103.

    Article  PubMed  CAS  Google Scholar 

  8. Merzenich MM, Brugge JF. Representation of the cochlear partition on thesuperior temporal plane of the macaque monkey. Brain Res. 1973;50:275-296.

    Article  PubMed  CAS  Google Scholar 

  9. Morel A, Garraghty PE, Kaas JH. Tonotopic organisation, architectonic fields, and connections of auditory cortex in macaque monkeys. J Comp Neurol. 1993;335:437-459.

    Article  PubMed  CAS  Google Scholar 

  10. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T,Zilles K. Human primary auditory cortex: Cytoarchitectonic subdivisionsand mapping into a spatial reference system. Neuroimage. 2001;13:684-701.

    Article  PubMed  CAS  Google Scholar 

  11. Recanzone GH. Spatial processing in the auditory cortex of the macaque monkey. Proc Natl Acad Sci. 2000;97:11829-11835.

    Article  PubMed  CAS  Google Scholar 

  12. Rauschecker JP, Tian B. Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci. 2000;97:11800-11806.

    Article  PubMed  CAS  Google Scholar 

  13. Tian B, Reser D, Durham A, Kustov A, Rauschecker JP. Functionalspecialisation in rhesus monkey auditory cortex. Science. 2001;292:290-293.

    Article  PubMed  CAS  Google Scholar 

  14. Guimaraes AR, Melcher JR, Talavage TM, Baker JR, Ledden P, Rosen BR, Kiang NYS, Fullerton BC, Weiskoff RM. Imaging subcortical auditory activ-ity in humans. Hum Brain Mapp. 1998;6:33-41.

    Article  PubMed  CAS  Google Scholar 

  15. Melcher JR, Sigalovsky IS, Guinan JJ, Levine RA. Lateralised tinnitus studied with functional magnetic resonance imaging: Abnormal inferior colliculus activation. J Neurophysiol. 2000;83:1058-1072.

    PubMed  CAS  Google Scholar 

  16. Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson RD. Encod-ing of the temporal regularity of sound in the human brainstem. Nature Neurosci. 2001;4:633-637.

    Article  PubMed  CAS  Google Scholar 

  17. Howard MA, Volkov IO, Abbas PJ, Damasio H, Ollendieck MC, Granner MA. A chronic microelectrode investigation of the tonotopic organisation of human auditory cortex. Brain Res. 1996;724:260-264.

    Article  PubMed  CAS  Google Scholar 

  18. Lütkenhöner B, Steinsträter O. High-precision neuromagnetic study of the functional organisation of the human auditory cortex. Audiol Neurootol. 1998;3:191-213.

    Article  PubMed  Google Scholar 

  19. Talavage TM, Ledden PJ, Benson RR, Rosen BR, Melcher JR. Frequency-dependent responses exhibited by multiple regions in human auditory cortex. Hearing Res. 2000;150:225-244.

    Article  CAS  Google Scholar 

  20. Palmer AR, Bullock DC, Chambers JD. A high-output, high-quality soundsystem for use in auditory fMRI. Neuroimage. 1998;7:S359.

    Google Scholar 

  21. Baumgart F, Kaulisch T, Tempelmann C, Gaschler-Markefski B, Tegeler C,Schindler F, Stiller D, Scheich H. Electrodynamic headphones and woofers for application in magnetic resonance imaging scanners. Med Phys. 1998;25:2068-2070.

    Article  PubMed  CAS  Google Scholar 

  22. Obler R, Köstler H, Weber B-P, Mack KF, Becker B. Safe electrical stimula-tion of the cochlear nerve at the promontory during functional magneticresonance imaging. Magn Reson Med. 1999;42:371-378.

    Article  PubMed  CAS  Google Scholar 

  23. Heller JW, Brackmann DE, Tucci DL, Nyenhuis JA, Chou C-K. Evaluationof MRI compatibility of the modified nucleus multichannel auditory brain-stem and cochlear implants. Am J Otol. 1996;17:724-729.

    PubMed  CAS  Google Scholar 

  24. Weber BP, Neuberger J, Battmer RD, Lenarz T. Magnetless cochlearimplant: relevance of adult experience for children. Am J Otol. 1997;18:S50-S51.

    PubMed  CAS  Google Scholar 

  25. Chou CK, McDougall JA, Chan KW. Absence of radiofrequency heatingfrom auditory implants during magnetic resonance imaging. Bioelectro-magnetics. 1995;16:307-316.

    Article  CAS  Google Scholar 

  26. Shellock FG, Morisoli S, Kanal E. MR procedures and biomedicalimplants, materials and devices: 1993 update. Radiology. 1993;189:587-599.

    PubMed  CAS  Google Scholar 

  27. Shellock FG, Ziarati M, Atkinson D, Chen D-Y. Determination of gradientmagnetic field-induced acoustic noise associated with the use of echoplanar and three-dimensional fast spin echo techniques. J Magn ResonImaging. 1998;8:1154-1157.

    Article  CAS  Google Scholar 

  28. Harms MP, Melcher JR. Sound repetition rate in the human auditorypathway: representations in the waveshape and amplitude of fMRI acti-vation. J Neurophysiol. 2002;88:1433-1450.

    PubMed  Google Scholar 

  29. Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW. Sound-levelmeasurements and calculations of safe noise dosage during EPI at 3 T.J Magn Reson Imaging. 2000;12:157-163.

    Google Scholar 

  30. Bandettini PA, Jesmanowicz A, Van Kylen J, Birn RA, Hyde J. FunctionalMRI of brain activation induced by scanner acoustic noise. Magn ResonMed. 1998;39:410-416.

    Article  CAS  Google Scholar 

  31. Talavage TM, Edmister WB, Ledden PJ, Weisskoff RM. Quantitative assess-ment of auditory cortex responses induced by imager acoustic noise. HumBrain Mapp. 1999;7:79-88.

    Article  CAS  Google Scholar 

  32. Ravicz ME, Melcher JR, Kiang NYS. Acoustic noise during functional mag-netic resonance imaging. J Acoust Soc Am. 2000;108:1683-1696.

    Article  PubMed  CAS  Google Scholar 

  33. Chambers J, Akeroyd MA, Summerfield AQ, Palmer AR. Active control ofthe volume acquisition noise in functional magnateic resonance imaging:Method and psychoacoustical investigation. J Acoust Soc Am. 2001;110:3041-3054.

    Article  PubMed  CAS  Google Scholar 

  34. Mansfield P, Chapman BLW, Bowtell R, Glover P, Coxon R, Harvey PR.Active acoustic screening: reduction of noise in gradient coils by Lorentzforce balancing. Magn Reson Med. 1995;33:276-281.

    Article  PubMed  CAS  Google Scholar 

  35. Bowtell R, Mansfield P. Quiet transverse gradient coils: Lorentz forcebalanced designs using geometric similitude. Magn Reson Med. 1995;34:494-497.

    Article  PubMed  CAS  Google Scholar 

  36. Price DL, De Wilde JP, Papadaki AM, Curran JS, Kitney RI. Investigationof acoustic noise on 15 MRI scanners from 0.2 T to 3 T. J Magn Reson Imaging.2001;13:288-293.

    Google Scholar 

  37. Hedeen RA, Edelstein WA. Characterisation and prediction of gradientacoustic noise in MR imagers. Magn Reson Med. 1997;37:7-10.

    Article  PubMed  CAS  Google Scholar 

  38. Hennel F, Girard F, Loenneker T. “Silent” MRI with soft gradient pulses.Magn Reson Med. 1999;42:6-10.

    Google Scholar 

  39. Scheich H, Baumgart F, Gashler-Markefski B, Tegeler C, Templemann C,Heinze HJ, Schindler F, Stiller D. Functional magnetic resonance imaging of a human auditory cortex area involved in foreground-background decomposition. Eur J Neurosci. 1998;10:803-809.

    Article  PubMed  CAS  Google Scholar 

  40. Hall DA, Summerfield AQ, Gonçalves MS, Foster JR, Palmer AR, Bowtell RW. Time-course of the auditory BOLD response to scanner noise. Magn Reson Med. 2000;43:601-606.

    Article  PubMed  CAS  Google Scholar 

  41. Edmister WB, Talavage TM, Ledden PJ, Weisskoff RM. Improved auditorycortex imaging using clustered volume acquisitions. Hum Brain Mapp. 1999;7:89-97.

    Article  PubMed  CAS  Google Scholar 

  42. Hall DA, Haggard MP, Akeroyd MA., Palmer AR, Summerfield AQ, Elliott MR Gurney E, Bowtell RW. Sparse temporal sampling in auditory fMRI. Hum Brain Mapp. 1999;7:213-223.

    Google Scholar 

  43. Belin P, Zatorre RJ, Hoge R, Evans AC, Pike B. Event-related fMRI of audi-tory cortex. Neuroimage. 1999;10:417-429.

    Article  PubMed  CAS  Google Scholar 

  44. Scheffler K, Bilecen D, Schmid N, Tschopp K, Seelig J. Auditory cor-tical responses in hearing subjects and unilateral deaf patients as detectedby functional magnetic resonance imaging. Cerebr Cortex. 1998;8:156-163.

    Article  CAS  Google Scholar 

  45. Jäncke L, Gaab N, Wüstenberg T, Scheich H, Heinze HJ. Short-term func-tional plasticity in the human auditory cortex: an fMRI study. Cogn Brain Res. 2001;12:479-485.

    Article  Google Scholar 

  46. Tecchio F, Bicciolo G, De Campora E, Pasqualetti P, Pizzella V, Indovina I, Cassetta E, Romani GL, Rossini PM. Tonotopic cortical changes following stapes substitution in otosclerotic patients: a magnetoencephalographic study. Hum Brain Mapp. 2000;10:28-38.

    Article  PubMed  CAS  Google Scholar 

  47. Tschopp K, Schillinger C, Schmid N, Rausch M, Bilecen D, Scheffler K. Evi-dence of central auditory compensation in unilateral deaf patients detected by functional MRI. Laryngorhinootol. 2000;79:753-757.

    Article  CAS  Google Scholar 

  48. Bilecen, D, Seifritz E, Radü EW, Schmid N, Wetzel S, Probst R, Scheffler K. Cortical reorganization after acute unilateral hearing loss traced by fMRI. Neurology. 2000;54:765.

    Article  PubMed  CAS  Google Scholar 

  49. Arnold W, Bartenstein P, Oestreicher E, Römer W, Schwaiger M. Focal metabolic activation in the predominant left auditory cortex in patients suf-fering from tinnitus: A PET study with [18F]deoxyglucose. ORL J Otorhino-laryngol Relat Spec. 1996;58:195-199.

    Article  CAS  Google Scholar 

  50. Cacace AT, Cousins JP, Parnes SM, Semenoff D, Holmes T, McFarland DJ, Davenport C, Stegbauer K, Lovely TJ. Cutaneous-evoked tinnitus.1. Phe-nomenology, psychophysics and functional imaging. Audiol Neurootol. 1999;4:247-257.

    Google Scholar 

  51. Melcher JR, Sigalovsky IS, Guinan JJ, Levine RA. Lateralized tinnitus studied with functional magnetic resonance imaging: Abnormal inferior colliculus activation. J Neurophysiol. 2000;83:1058-1072.

    PubMed  CAS  Google Scholar 

  52. Schmidt H, Davis A, Stasche N, Hormann K. The lidocaine test in the deter-mination of tinnitus—evaluation of results. HNO. 1994;42:677-684.

    PubMed  CAS  Google Scholar 

  53. Levine RA, Melcher JR. Editorial: Imaging tinnitus. J Audiol Med. 2000;9:v-x.

    Google Scholar 

  54. Giraud AL, Truy E, Frackowiak R. Imaging plasticity in cochlear implant patients. Audiol Neurootol. 2001;6:381-393.

    Article  PubMed  CAS  Google Scholar 

  55. Alwatban AZ, Ludman CN, Mason SM, O’Donoghue GM, Peters AM, Morris PG. A method for the direct electrical stimulation of the auditory system in deaf subjects: A functional magnetic resonance imaging study. J Magn Reson Imaging. 2002;16:6-12.

    Article  PubMed  Google Scholar 

  56. Schmidt AM, Weber, BP, Becker, H. Functional magnetic resonance imaging of the auditory cortex as a diagnostic tool in cochlear implant candidates. Neuroimaging Clin N Am. 2001;11:297-304.

    PubMed  CAS  Google Scholar 

  57. Berthezène Y, Truy E, Morgon A, Giard HM, Hermier M, Franconi JM,Froment JC. Auditory cortex activation in deaf subjects during cochlearelectrical stimulation. Invest Radiol. 1997;32:297-301.

    Article  PubMed  Google Scholar 

  58. Hofmann E, Preibisch C, Knaus C, Muller J, Kremser C, Teissl C. Nonin-vasive direct stimulation of the cochlear nerve for functional MR imagingof the auditory cortex. Am J Neuroradiol. 1999;20:1970-1972.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hall, D.A. (2006). fMRI of the Auditory Cortex. In: Faro, S.H., Mohamed, F.B. (eds) Functional MRI. Springer, New York, NY. https://doi.org/10.1007/0-387-34665-1_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-34665-1_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-23046-7

  • Online ISBN: 978-0-387-34665-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics