Skip to main content

The Biologic Effects of Low-Level Radiation

  • Chapter
Pediatric PET Imaging

Abstract

Few topics engender more vigorous debate than the biologic effects of low-level radiation and selection of a mathematical model to predict the incidence of cancer. A recent review on radiation risk stated (1):

  • The A-bomb survivors represent the best source of data for risk estimates of radiation-induced cancer.

  • It is clear that children are ten times more sensitive than adults to the induction of cancer.

  • There are no assumptions, and no extrapolation indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hall EJ. Lessons we have learned from our children: cancer risks from diagnostic radiology. Pediatr Radiol 2002;32:700–706.

    Article  PubMed  Google Scholar 

  2. Ernst M, Freed ME, Zametkin AJ. Health hazards of radiation exposure in the context of brain imaging research: special consideration for children. J Nucl Med 1998;39(4):689–698.

    CAS  PubMed  Google Scholar 

  3. Ron E, Modan B. Benign and malignant thyroid neoplasms after childhood irradiation for tinea capitis. J Natl Cancer Inst 1980;65:7–11.

    CAS  PubMed  Google Scholar 

  4. Lundell M, Holm L. Mortality from leukaemia after irradiation in infancy for skin haemangioma. Radiat Res 1996;145:595–601.

    Article  CAS  PubMed  Google Scholar 

  5. Auvinen A, Hakama M, Arvela H, et al. Fallout from Chernobyl and incidence of childhood leukaemia in Finland. Br Med J 1994;309:151–154.

    CAS  Google Scholar 

  6. Hjalmars U, Kuldorf M, Gustaffson G, on behalf of the Swedish Child Leukaemia Group. Risk of acute childhood leukaemia in Sweden after the Chernobyl reactor accident. Br Med J 1994;309:154–157.

    CAS  Google Scholar 

  7. Rallison M, Dobyns B, Keating R, et al. Thyroid nodularity in children. JAMA 1975;233:1069–1072.

    Article  CAS  PubMed  Google Scholar 

  8. Holm L, Wilklund K, Lundell G, et al. Thyroid cancer after diagnostic doses of 131I: a retrospective cohort study. J Natl Cancer Inst 1988;80:1132–1138.

    Article  CAS  PubMed  Google Scholar 

  9. Amsel J, Waterbor J, Oler J, Rosenwaike I, Marshall K. Relationship of sitespecific cancer mortality rates to altitude. Carcinogenesis 1982;3:461–465.

    Article  CAS  PubMed  Google Scholar 

  10. Frigerio NA, Stowe RS. Carcinogenic and genetic hazard from background radiation. In: Biological and Environmental Effects of Low-Level Radiation. Vienna: International Atomic Energy Agency, 1976.

    Google Scholar 

  11. Cohen B, Colditz G. Tests of the linear no-threshold theory for lung cancer induced by exposure to radon. Environ Res 1994;64:65–69.

    Article  CAS  PubMed  Google Scholar 

  12. Blot W, Xu Z, Boice J, et al. Indoor radon and lung cancer in China. J Natl Cancer Inst 1990;82:1025–1030.

    Article  CAS  PubMed  Google Scholar 

  13. Saenger E, Thoma G, Tompkins E. Incidence of leukaemia following treatment of hyperthyroidism. JAMA 1968;205:855–862.

    Article  CAS  PubMed  Google Scholar 

  14. Hall P, Boice J, Berg G, et al. Leukaemia incidence after 131I exposure. J Natl Cancer Inst 1992;340:1–4

    CAS  Google Scholar 

  15. Kendall G, Muirhead C, MacGibbon B, et al. First analysis of the national registry for radiation workers: occupation exposure to ionizing radiation and mortality. Br Med J 1992;304:220–225.

    Article  CAS  Google Scholar 

  16. Doody M, Mandel J, Boice JJ. Employment practices and breast cancer among radiologic technologists. J Occup Environ Med 1995;37:321–327.

    Article  CAS  PubMed  Google Scholar 

  17. Gilbert ES, Fry SA, Wiggs LD, Voelz GL, Cragle DL, Petersen GS. Analyses of combined mortality data on workers at the Hanford Site, Oak Ridge National Laboratory, and Rocky Flats Nuclear Weapons Plant. Radiat Res 1989;120:19–35.

    Article  CAS  PubMed  Google Scholar 

  18. Cardis E, Gilbert ES, Carpenter L, et al. Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radiat Res 1995;142:117–132.

    Article  CAS  PubMed  Google Scholar 

  19. Tokarskaya ZB, Okladlnikova ND, Belyaeva ZD, Drozhko EG. Multifactorial analysis of lung cancer dose-response relationships for workers at the Mayak Nuclear Enterprise. Health Phys 1997;73:899–905.

    Article  CAS  PubMed  Google Scholar 

  20. Voelz GL, Wilkinson CS, Acquavelle JF. An update of epidemiologic studies of plutonium workers. Health Phys 1983;44(suppl 1):493–503.

    PubMed  Google Scholar 

  21. Gilbert ES, Petersen GR, Buchanan JA. Mortality of workers at the Hanford site: 1945–1981. Health Phys 1989;56:11–25.

    Article  CAS  PubMed  Google Scholar 

  22. Cohen BL. Review cancer risk from low-level radiation. AJR 2002;179: 1137–1143.

    PubMed  Google Scholar 

  23. Luan Y. The effects of low and very low doses of radiation on human health. Trans Am Nucl Soc 1999;18–23.

    Google Scholar 

  24. Olivieri G, Bodycote J, Wolff S. Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science 1984;223:594–597.

    Article  CAS  PubMed  Google Scholar 

  25. Shadley J, Dai G. Cytogenic and survival adaptive responses in G-1 phase human lymphocytes. Mutat Res 1992;265:273–281.

    CAS  PubMed  Google Scholar 

  26. Sanderson B, Morely A. Exposure of human lymphocytes to ionizing radiation reduces mutagenesis by subsequent ionizing radiation. Mutat Res 1986;164:347–351.

    CAS  PubMed  Google Scholar 

  27. Kelsey K, Memisoglu A, Frenkel D, Liber H. Human lymphocytes exposed to low doses of x-rays are less susceptible to radiation-induces mutagenesis. Mutat Res 1991;263:197–201.

    Article  CAS  PubMed  Google Scholar 

  28. Shadley J, Wolff S. Very low doses of x-rays can cause human lymphocytes to become less susceptible to ionizing radiation. Mutagenesis 1987;2:95–96.

    Article  CAS  PubMed  Google Scholar 

  29. Fritz-Niggli H, Schaeppi-Buechi C. Adaptive response to dominant lethality of mature (class A) and immature (class B) oocytes of D. melanogaster to low doses of ionizing radiation: effects in repair-proficient (yw) and repair-deficient strains (mei 41D5 and mus 320DI). Int J Radiat Biol 1991;59: 175–184.

    Article  CAS  PubMed  Google Scholar 

  30. Miller RC, Randers-Pehrson G, Geard CR, Hall EJ, Brenner DJ. The oncogenic transforming potential of the passage of single alpha particles thought mammalian cell nuclei. Proc Natl Acad Sci USA 1999;96:19–22.

    Article  CAS  PubMed  Google Scholar 

  31. Health Physics Society. Radiation risk in perspective: position statement of the Health Physics Society (adopted January 1996). In: Health Physics Society Directory and Handbook. 1998–1999. McLean, VA: Health Physics Society, 1998:238.

    Google Scholar 

  32. Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K. Studies of the mortality of atomic bomb survivors, report 12.1 Cancer: 1950–1990. Radiat Res 1996;146:1–27.

    Article  CAS  PubMed  Google Scholar 

  33. Little MP, Muirhead CR. Evidence for curvilinearity in the cancer incidence dose-response in the Japanese atomic bomb survivors. Int J Radiat Biol 1996;70(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  34. Heindenreich WF, Jacob P, Paretzke HG. Exact solutions of the clonal expansion model and their application to the incidence of solid tumors of atomic bomb survivors. Radiat Environ Biophys 1997;36(1):45–58.

    Article  Google Scholar 

  35. NCR Report No. 136. Evaluation of the linear-nonthreshold dose-response model for iodizing radiation. Recommendation of the National Counsel on Radiation Protection and Measurements. Society of Nuclear Medicine, June 4, 2001, pp. 279–286.

    Google Scholar 

  36. Mossman KL. The linear no-threshold debate: where do we go from here? Med Phys 1998;25(3):279–284.

    Article  CAS  PubMed  Google Scholar 

  37. Southwood TRE. Crookshank Lecture, risk from radiation—perception and reality. Clin Radiol 1994;49:1–6.

    Article  CAS  PubMed  Google Scholar 

  38. Stewart A. A-bomb data: detection of bias in the Life Span Study cohort. Environ Health Perspect 1997;105(6):1519–1521.

    Article  PubMed  Google Scholar 

  39. Kellerer AM, Nekolla E. Neutron versus gamma-ray risk estimates. Inferences from the cancer incidence and mortality data in Hiroshima. Radiat Environ Biophys 1997;36(2):73–83.

    Article  CAS  PubMed  Google Scholar 

  40. Heidenreich WF, Luebeck EG, Hazelton WD, Paretzke HG, Moolgavkar SH. Multistage models and the incidence of cancer in the cohort of atomic bomb survivors. Radiat Res 2002;158(5):607–614.

    Article  CAS  PubMed  Google Scholar 

  41. Pierce DA, Mendelsohn ML. A model for radiation-related cancer suggested by atomic bomb survivor data. Radiat Res 1999;152(6):642–654.

    Article  CAS  PubMed  Google Scholar 

  42. Kellerer AM. The effects of neutrons in Hiroshima. Implications for the risk estimates. C R Acad Sci III 1999;322(2–3):229–237.

    CAS  PubMed  Google Scholar 

  43. Little MP, Muirhead CR. Curvature in the cancer mortality dose response in Japanese atomic bomb survivors: absence of evidence of threshold. Int J Radiat Biol 1998;74(4):471–480.

    Article  CAS  PubMed  Google Scholar 

  44. Hoel DG, Li P. Threshold models in radiation carcinogenesis. Health Phys 1998;75(3):241–250.

    Article  CAS  PubMed  Google Scholar 

  45. Sinclair WK. The linear no-threshold response: why not linearity? Med Phys 1998;25(3):285–290.

    Article  CAS  PubMed  Google Scholar 

  46. Stewart A. A-bomb data: detection of bias in the Life Span Study cohort. Environ Health Perspect 1997;105(suppl 6):1519–1521.

    Article  PubMed  Google Scholar 

  47. Kellerer AM. Radiation risk-historical perspective and current issues. J Radiol Prot 2002;22(3A):A1–10.

    Article  PubMed  Google Scholar 

  48. Ron E. Ionizing radiation and cancer risk: evidence from epidemiology. Radiat Res 1998;150(5 suppl):S30–41.

    Article  CAS  PubMed  Google Scholar 

  49. Heidenreich WF, Paretzke HG, Jacob P. No evidence for increased tumor rates below 200mSv in the atomic bomb survivors data. Radiat Environ Biophys 1997;36(3):205–207.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Charron, M. (2006). The Biologic Effects of Low-Level Radiation. In: Charron, M. (eds) Pediatric PET Imaging. Springer, New York, NY. https://doi.org/10.1007/0-387-34641-4_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-34641-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-28836-9

  • Online ISBN: 978-0-387-34641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics