Skip to main content

Neurodevelopmental and Neuropsychiatric Disorders

  • Chapter
Pediatric PET Imaging

Abstract

Positron emission tomography (PET) and single photon emission computed tomography (SPECT) scans offer great promise in helping to unravel the scientific basis for neurodevelopmental and neuropsychiatric disorders. To date, results have been somewhat limited by the difficulty in obtaining adequate control groups, technical difficulties in studying children, small numbers of subjects, variable analytic methods, and the inability to repeat scans in order to understand the effects of development and intervention due to concerns about exposure to radiopharmaceuticals. Nonetheless, some consistent findings have emerged, and intriguing new results point toward future directions of study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 4th ed. (DSM-IV). Washington, DC: APA, 1994.

    Google Scholar 

  2. Spencer TJ, Biederman J, Wilens TE, Faraone SV. Overview and neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63(suppl 12):3–9.

    PubMed  Google Scholar 

  3. Glanzman M. Genetics, imaging, and neurochemistry in attention deficit and hyperactivity in children and adults. In: Accardo P, Blondis T, Whitman B, Stein M, eds. Baltimore: Paul H, Brookes, in press, 2006.

    Google Scholar 

  4. Durston S. A review of the biological bases of ADHD: what have we learned from imaging studies? Ment Retard Dev Disabil Res Rev 2003;9(3): 184–195.

    Article  PubMed  Google Scholar 

  5. Durston S, Tottenham NT, Thomas KM, et al. Differential patterns of striatal activation in young children with and without ADHD. Biol Psychiatry 2003;53(10):871–878.

    Article  PubMed  Google Scholar 

  6. Giedd JN, Blumenthal J, Molloy E, Castellanos FX. Brain imaging of attention deficit/hyperactivity disorder. Ann N Y Acad Sci 2001;931:33–49.

    Article  PubMed  CAS  Google Scholar 

  7. Castellanos FX, Lee PP, Sharp W, et al. Developmental trajectories of brain volume abnormalities in children and adolescents with attentiondeficit/ hyperactivity disorder. JAMA 2002;288(14):1740–1748.

    Article  PubMed  Google Scholar 

  8. Schweitzer JB, Faber TL, Grafton ST, Tune LE, Hoffman JM, Kilts CD. Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. Am J Psychiatry 2000;157(2):278–280.

    Article  PubMed  CAS  Google Scholar 

  9. Rubia K, Overmeyer S, Taylor E, et al. Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry 1999;156(6):891–896.

    PubMed  CAS  Google Scholar 

  10. Vaidya CJ, Austin G, Kirkorian G, et al. Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A 1998;95(24):14494–14499.

    Article  PubMed  CAS  Google Scholar 

  11. Lou HC, Henriksen L, Bruhn P. Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Arch Neurol 1984;41(8): 825–829.

    PubMed  CAS  Google Scholar 

  12. Lou HC, Henriksen L, Bruhn P, Borner H, Nielsen JB. Striatal dysfunction in attention deficit and hyperkinetic disorder. Arch Neurol 1989;46(1): 48–52.

    PubMed  CAS  Google Scholar 

  13. Lou HC, Henriksen L, Bruhn P. Focal cerebral dysfunction in developmental learning disabilities. Lancet 1990;335(8680):8–11.

    Article  PubMed  CAS  Google Scholar 

  14. Zametkin AJ, Nordahl TE, Gross M, et al. Cerebral glucose metabolism in adults with hyperactivity of childhood onset. N Engl J Med 1990;323(20): 1361–1366.

    Article  PubMed  CAS  Google Scholar 

  15. Zametkin AJ, Liebenauer LL, Fitzgerald GA, et al. Brain metabolism in teenagers with attention-deficit hyperactivity disorder. Arch Gen Psychiatry 1993;50(5):333–340.

    PubMed  CAS  Google Scholar 

  16. Ernst M, Liebenauer LL, King AC, Fitzgerald GA, Cohen RM, Zametkin AJ. Reduced brain metabolism in hyperactive girls. J Am Acad Child Adolesc Psychiatry 1994;33(6):858–868.

    Article  PubMed  CAS  Google Scholar 

  17. Ernst M, Cohen RM, Liebenauer LL, Jons PH, Zametkin AJ. Cerebral glucose metabolism in adolescent girls with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 1997;36(10):1399–1406.

    Article  PubMed  CAS  Google Scholar 

  18. Ernst M, Zametkin AJ, Phillips RL, Cohen RM. Age-related changes in brain glucose metabolism in adults with attention-deficit/hyperactivity disorder and control subjects. J Neuropsychiatry Clin Neurosci 1998; 10(2):168–177.

    PubMed  CAS  Google Scholar 

  19. Sieg KG, Gaffney GR, Preston DF, Hellings JA. SPECT brain imaging abnormalities in attention deficit hyperactivity disorder. Clin Nucl Med 1995;20(1):55–60.

    Article  PubMed  CAS  Google Scholar 

  20. Amen DG, Carmichael BD. High-resolution brain SPECT imaging in ADHD. Ann Clin Psychiatry 1997;9(2):81–86.

    PubMed  CAS  Google Scholar 

  21. Kaya GC, Pekcanlar A, Bekis R, et al. Technetium-99m HMPAO brain SPECT in children with attention deficit hyperactivity disorder. Ann Nucl Med 2002;16(8):527–531.

    Article  PubMed  Google Scholar 

  22. Kim BN, Lee JS, Shin MS, Cho SC, Lee DS. Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder. Statistical parametric mapping analysis. Eur Arch Psychiatry Clin Neurosci 2002;252(5): 219–225.

    Article  PubMed  Google Scholar 

  23. Lorberboym M, Watemberg N, Nissenkorn A, Nir B, Lerman-Sagie T. Technetium 99m ethylcysteinate dimer single-photon emission computed tomography (SPECT) during intellectual stress test in children and adolescents with pure versus comorbid attention-deficit hyperactivity disorder (ADHD). J Child Neurol 2004;19(2):91–96.

    PubMed  Google Scholar 

  24. Spalletta G, Pasini A, Pau F, Guido G, Menghini L, Caltagirone C. Prefrontal blood flow dysregulation in drug naive ADHD children without structural abnormalities. J Neural Transm 2001;108(10):1203–1216.

    Article  PubMed  CAS  Google Scholar 

  25. Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM. DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A (fluorine-18) fluorodopa positron emission tomographic study. J Neurosci 1998;18(15):5901–5907.

    PubMed  CAS  Google Scholar 

  26. Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Cohen RM. High midbrain (18F)DOPAaccumulation in children with attention deficit hyperactivity disorder. Am J Psychiatry 1999;156(8):1209–1215.

    PubMed  CAS  Google Scholar 

  27. Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 1998;94(1):127–152.

    Article  PubMed  CAS  Google Scholar 

  28. Ohno M. The dopaminergic system in attention deficit/hyperactivity disorder. Congenit Anom (Kyoto) 2003;43(2):114–122.

    Article  CAS  Google Scholar 

  29. Solanto MV. Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res 2002;130(1–2):65–71.

    Article  PubMed  CAS  Google Scholar 

  30. DiMaio S, Grizenko N, Joober R. Dopamine genes and attention-deficit hyperactivity disorder: a review. J Psychiatry Neurosci 2002;29:27–38.

    Google Scholar 

  31. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 1999;354(9196):2132–2133.

    Article  PubMed  CAS  Google Scholar 

  32. Dresel S, Krause J, Krause KH, et al. Attention deficit hyperactivity disorder: binding of (99mTc)TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 2000;27(10): 1518–1524.

    Article  PubMed  CAS  Google Scholar 

  33. Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K. Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 2000;285(2):107–110.

    Article  PubMed  CAS  Google Scholar 

  34. van Dyck CH, Quinlan DM, Cretella LM, et al. Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am J Psychiatry 2002;159(2):309–312.

    Article  PubMed  Google Scholar 

  35. Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD. Dopamine transporter density in the basal ganglia assessed with (123I)IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 2003;30(2):306–311.

    Article  PubMed  CAS  Google Scholar 

  36. Simpson D, Plosker GL. Atomoxetine: a review of its use in adults with attention deficit hyperactivity disorder. Drugs 2004;64(2):205–222.

    Article  PubMed  CAS  Google Scholar 

  37. Hunt RD, Paguin A, Payton K. An update on assessment and treatment of complex attention-deficit hyperactivity disorder. Pediatr Ann 2001; 30(3):162–172.

    PubMed  CAS  Google Scholar 

  38. Matochik JA, Nordahl TE, Gross M, et al. Effects of acute stimulant medication on cerebral metabolism in adults with hyperactivity. Neuropsychopharmacology 1993;8(4):377–386.

    PubMed  CAS  Google Scholar 

  39. Matochik JA, Liebenauer LL, King AC, Szymanski HV, Cohen RM, Zametkin AJ. Cerebral glucose metabolism in adults with attention deficit hyperactivity disorder after chronic stimulant treatment. Am J Psychiatry 1994;151(5):658–664.

    PubMed  CAS  Google Scholar 

  40. Schweitzer JB, Lee DO, Hanford RB, et al. A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology 2003;28(5):967–973.

    PubMed  CAS  Google Scholar 

  41. Volkow ND, Wang GJ, Fowler JS, et al. Differences in regional brain metabolic responses between single and repeated doses of methylphenidate. Psychiatry Res 1998;83(1):29–36.

    Article  PubMed  CAS  Google Scholar 

  42. Volkow ND, Wang GJ, Fowler JS, et al. Effects of methylphenidate on regional brain glucose metabolism in humans: relationship to dopamine D2 receptors. Am J Psychiatry 1997;154(1):50–55.

    PubMed  CAS  Google Scholar 

  43. Mattay VS, Berman KF, Ostrem JL, et al. Dextroamphetamine enhances “neural network-specific” physiological signals: a positron-emission tomography rCBF study. J Neurosci 1996;16(15):4816–4822.

    PubMed  CAS  Google Scholar 

  44. Szobot CM, Ketzer C, Cunha RD, et al. The acute effect of methylphenidate on cerebral blood flow in boys with attention-deficit/ hyperactivity disorder. Eur J Nucl Med Mol Imaging 2003;30(3):423–426.

    Article  PubMed  CAS  Google Scholar 

  45. Langleben DD, Acton PD, Austin G, et al. Effects of methylphenidate discontinuation on cerebral blood flow in prepubescent boys with attention deficit hyperactivity disorder. J Nucl Med 2002;43(12):1624–1629.

    PubMed  CAS  Google Scholar 

  46. Volkow ND, Fowler JS, Wang G, Ding Y, Gatley SJ. Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 2002;6(suppl 1):S31–43.

    PubMed  Google Scholar 

  47. Vles JS, Feron FJ, Hendriksen JG, Jolles J, van Kroonenburgh MJ, Weber WE. Methylphenidate down-regulates the dopamine receptor and transporter system in children with attention deficit hyperkinetic disorder (ADHD). Neuropediatrics 2003;34(2):77–80.

    Article  PubMed  CAS  Google Scholar 

  48. Ilgin N, Senol S, Gucuyener K, Gokcora N, Sener S. Is increased D2 receptor availability associated with response to stimulant medication in ADHD. Dev Med Child Neurol 2001;43(11):755–760.

    Article  PubMed  CAS  Google Scholar 

  49. Leckman JF. Tourette’s syndrome. Lancet 2002;360(9345):1577–1586.

    Article  PubMed  Google Scholar 

  50. Robertson MM. Diagnosing Tourette syndrome: is it a common disorder? J Psychosom Res 2003;55(1):3–6.

    Article  PubMed  Google Scholar 

  51. Pauls DL. An update on the genetics of Gilles de la Tourette syndrome. J Psychosom Res 2003;55(1):7–12.

    Article  PubMed  Google Scholar 

  52. Comings DE. Clinical and molecular genetics of ADHD and Tourette syndrome. Two related polygenic disorders. Ann N Y Acad Sci 2001; 931:50–83.

    Article  PubMed  CAS  Google Scholar 

  53. Comings D. Tourette Syndrome and Human Behavior. Duarte, CA: Hope Press, 1990.

    Google Scholar 

  54. Power T, Glanzman M. Tic disorders in children’s needs. III: Development, problems and alternatives. In: Bear G, Mike K, Thomas A, eds. Bethesda, MD: National Association of Psychologists, in press, 2006.

    Google Scholar 

  55. Gerard E, Peterson BS. Developmental processes and brain imaging studies in Tourette syndrome. J Psychosom Res 2003;55(1):13–22.

    Article  PubMed  Google Scholar 

  56. Kates WR, Frederikse M, Mostofsky SH, et al. MRI parcellation of the frontal lobe in boys with attention deficit hyperactivity disorder or Tourette syndrome. Psychiatry Res 2002;116(1–2):63–81.

    PubMed  Google Scholar 

  57. Braun A, Randolph C, Stoetter B, et al. The functional neuroanatomy of Tourette’s syndrome: an FDG-PET Study. II: relationships between regional cerebral metabolism and associated behavioral and cognitive features of the illness. Neuropsychopharmacology 1995;13:151–168.

    Article  PubMed  CAS  Google Scholar 

  58. Eidelberg D, Moeller J, Antonini A, et al. The metabolic anatomy of Tourette’s syndrome. Neurology 1997;48:927–934.

    PubMed  CAS  Google Scholar 

  59. Moriarty J, Costa D, Schmitz B, Trimble M, Ell P, Robertson MM. Brain perfusion abnormalities in Gilles de la Tourette’s syndrome. Br J Psychiatry 1995;167:249–254.

    Article  PubMed  CAS  Google Scholar 

  60. George M, Trimble M, Costa DC, Robertson MM, Ring H, Ell PJ. Elevated frontal cerebral blood flow in Gilles de la Tourette syndrome: a 99 Tcm-HMPAO SPECT study. Psychiatry Res Neuroimaging 1992;45: 143–151.

    Article  CAS  Google Scholar 

  61. Stern E, Silbersweig D, Chee K, et al. A functional neuroanatomy of tics in Tourette syndrome. Arch Gen Psychiatry 2000;57:741–748.

    Article  PubMed  CAS  Google Scholar 

  62. Peterson BS, Skudlarski P, Anderson AW, et al. A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Arch Gen Psychiatry 1998;55(4):326–333.

    Article  PubMed  CAS  Google Scholar 

  63. Malison RT, McDougle CJ, van Dyck CH, et al. 123I B-CIT SPECT imaging of striatal dopamine transporter binding in Tourette’s disorder. Am J Psychiatry 1995;152:1359–1361.

    PubMed  CAS  Google Scholar 

  64. Muller-Vahl K, Berding G, Brucke T, et al. Dopamine transporter binding in Gilles de la Tourette syndrome. J Neurol 2000;247:514–520.

    Article  PubMed  CAS  Google Scholar 

  65. Wong D, Singer HS, Marenco S, et al. Dopamine transporter reuptake sites measured by (11C)WIN 35,428 PET imaging are elevated in Tourette syndrome (abstract). J Nucl Med 1994;35:130.

    Google Scholar 

  66. Ernst M, Zametkin A, Jons PH, Matochik JA, Pascualvaca D, Cohen RM. High presynaptic dopaminergic activity in children with Tourette’s disorder. J Am Acad Child Adolesc Psychiatry 1999;38:86–94.

    Article  PubMed  CAS  Google Scholar 

  67. Stamenkovic M, Schindler S, Asenbaum S, et al. No change in striatal dopamine re-uptake site density in psychotropic drug naive and in currently treated Tourette’s disorder patients: a(123)-beta-CIT SPECT study. Eur Neuropsychopharmacol 2001;11:69–74.

    Article  PubMed  CAS  Google Scholar 

  68. Serra-Mestres J, Ring H, Costa D, et al. Dopamine transporter binding in Gilles de la Tourette syndrome: a (123I)FP-CIT/SPECT study. Acta Psychiatr Scand 2004;109:140–146.

    Article  PubMed  CAS  Google Scholar 

  69. Albin RL, Koeppe RA, Bohnen NI, et al. Increased ventral striatal monoaminergic innervation in Tourette syndrome. Neurology 2003;61(3): 310–315.

    PubMed  CAS  Google Scholar 

  70. Wong D, Singer HS, Brandt J, et al. D2-like dopamine receptor density in Tourette’s syndrome measured by PET. J Nucl Med 1997;38:1243–1247.

    PubMed  CAS  Google Scholar 

  71. Wolf S, Jones D, Knable M, et al. Tourette syndrome prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding. Science 1996;273:1225–1227.

    Article  PubMed  CAS  Google Scholar 

  72. Hammill D. On defining learning disabilities: an emerging consensus. J Learning Disabil 1990;23:74–84.

    Article  CAS  Google Scholar 

  73. Habib M. The neurological basis of developmental dyslexia. An overview and working hypothesis. Brain 2000;123:2373–2399.

    Article  PubMed  Google Scholar 

  74. Tallal P, Miller S, Fitch R. Neurobiological basis of speech: a case for the preeminence of temporal processing. Irish J Psychol 1995;16:194–219.

    Google Scholar 

  75. Breznitz Z, Meyler A. Speed of lower-level auditory and visual processing as a basic factor in dyslexia: electrophysiological evidence. Brain Language 2003;16:785–803.

    Google Scholar 

  76. Castles A, Datta H, Gayan J, Olson R. Varieties of developmental reading disorders: genetic and environmental influences. J Exp Child Psychol 1999;72:73–94.

    Article  PubMed  CAS  Google Scholar 

  77. Geschwind N, Behan P. Left-handedness: association with immune disease, migraine and developmental disorder. Proc Natl Acad Sci U S A 1982;79:5097–5100.

    Article  PubMed  CAS  Google Scholar 

  78. Bryden M, McManus I, Bulman-Fleming M. Evaluating the empirical support for the Geschwind-Behan-Galaburda model of cerebral lateralization. Brain Cog 1994;266:276–279.

    Google Scholar 

  79. Shaywitz S. Overcoming Dyslexia. New York: Alfred A. Knopf, 2003.

    Google Scholar 

  80. Paulesu E, Desmond J-F, Fazio F, et al. Dyslexia: cultural diversity and biological unity. Science 2001;291:2165–2167.

    Article  PubMed  CAS  Google Scholar 

  81. Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 1996;382(6586):66–69.

    Article  PubMed  CAS  Google Scholar 

  82. Simos P, Fletcher J. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology 2002;58:1203–1213.

    PubMed  CAS  Google Scholar 

  83. McCandiss B, Noble K. The development of reading impairment: a cognitive neuroscience model. MRDD Res Rev 2003;9:196–205.

    Google Scholar 

  84. Frank Y, Pavlakis S. Brain imaging in neurobehavioral disorders. Pediatr Neurol 2001;25:278–287.

    Article  PubMed  CAS  Google Scholar 

  85. Flowers D, Wood F, Naylor C. Regional cerebral blood flow correlates of language processes in reading disability. Arch Neurol 1991;48: 637–643.

    PubMed  CAS  Google Scholar 

  86. Rumsey J, Nace K, Donohue B, Wise D, Maisog J, Andreason P. Apositron emission tomographic study of impaired word recognition and phonological processing in dyslexic men. Arch Neurol 1997;54:562–573.

    PubMed  CAS  Google Scholar 

  87. Gross-Glenn K, Duara R, Barker W, et al. Positron emission tomographic studies during serial word reading by normal and dyslexic adults. J Clin Exp Neuropsychol 1999;13:531–544.

    Article  Google Scholar 

  88. Hagman J, Wood F, Buchsbaum M, Tallal P, Flowers L, Katz W. Cerebral brain metabolism in adult dyslexic subjects assessed with positron emission tomography during performance of an auditory task. Arch Neurol 1992;49:734–739.

    PubMed  CAS  Google Scholar 

  89. Rae C, Lee M, Dixon R. Metabolic abnormalities in developmental dyslexia detected by 1H magnetic resonance spectroscopy. Lancet 1998; 351:1849–1852.

    Article  PubMed  CAS  Google Scholar 

  90. Richards T, Dager S, Corina D, et al. Dyslexia children have abnormal brain lactate response to reading related language tasks. AJNR 1999; 20:1393–1398.

    PubMed  CAS  Google Scholar 

  91. Rapin I. Autism. N Engl J Med 1997;337(2):97–104.

    Article  PubMed  CAS  Google Scholar 

  92. Kanner L. Autistic disturbances of affective contact. Nerv Child 1943;2: 217–250.

    Google Scholar 

  93. Rapin I, Katzman R. Neurobiology of autism. Ann Neurol 1998;43(1):7–14.

    Article  PubMed  CAS  Google Scholar 

  94. Folstein SE, Rosen-Sheidley B. Genetics of autism: complex aetiology for a heterogeneous disorder. Nat Rev Genet 2001;2(12):943–955.

    Article  PubMed  CAS  Google Scholar 

  95. Korvatska E, Van de Water J, Anders TF, Gershwin ME. Genetic and immunologic considerations in autism. Neurobiol Dis 2002;9(2):107–125.

    Article  PubMed  CAS  Google Scholar 

  96. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 2005;57(1):67–81.

    Article  PubMed  CAS  Google Scholar 

  97. Gilberg C, Coleman M. The Biology of Autistic Syndromes. London: MacKeith Press, 1992.

    Google Scholar 

  98. Fombonne E. Epidemiological surveys of autism and other pervasive developmental disorders: an update. J Autism Dev Disord 2003;33(4):365–382.

    Article  PubMed  Google Scholar 

  99. Yeargin-Allsopp M, Rice C, Karapurkar T, Doernberg N, Boyle C, Murphy C. Prevalence of autism in a US metropolitan area. JAMA 2003;289(1): 49–55.

    Article  PubMed  Google Scholar 

  100. Piven J, Berthier ML, Starkstein SE, Nehme E, Pearlson G, Folstein S. Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. Am J Psychiatry 1990;147(6):734–739.

    PubMed  CAS  Google Scholar 

  101. Hier DB, LeMay M, Rosenberger PB. Autism and unfavorable left-right asymmetries of the brain. J Autism Dev Disord 1979;9(2):153–159.

    Article  PubMed  CAS  Google Scholar 

  102. Campbell M, Rosenbloom S, Perry R, et al. Computerized axial tomography in young autistic children. Am J Psychiatry 1982;139(4):510–512.

    PubMed  CAS  Google Scholar 

  103. Damasio H, Maurer RG, Damasio AR, Chui HC. Computerized tomographic scan findings in patients with autistic behavior. Arch Neurol 1980;37(8):504–510.

    PubMed  CAS  Google Scholar 

  104. Courchesne E, Yeung-Courchesne R, Press GA, Hesselink JR, Jernigan TL. Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 1988;318(21):1349–1354.

    Article  PubMed  CAS  Google Scholar 

  105. Courchesne E, Townsend J, Saitoh O. The brain in infantile autism: posterior fossa structures are abnormal. Neurology 1994;44(2):214–223.

    PubMed  CAS  Google Scholar 

  106. Piven J, Nehme E, Simon J, Barta P, Pearlson G, Folstein SE. Magnetic resonance imaging in autism: measurement of the cerebellum, pons, and fourth ventricle. Biol Psychiatry 1992;31(5):491–504.

    Article  PubMed  CAS  Google Scholar 

  107. Filipek PA. Quantitative magnetic resonance imaging in autism: the cerebellar vermis. Curr Opin Neurol 1995;8(2):134–138.

    Article  PubMed  CAS  Google Scholar 

  108. Courchesne E. Brain development in autism: early overgrowth followed by premature arrest of growth. Ment Retard Dev Disabil Res Rev 2004;10(2):106–111.

    Article  PubMed  Google Scholar 

  109. Courchesne E, Redcay E, Kennedy DP. The autistic brain: birth through adulthood. Curr Opin Neurol 2004;17(4):489–496.

    Article  PubMed  Google Scholar 

  110. Boddaert N, Zilbovicius M. Functional neuroimaging and childhood autism. Pediatr Radiol 2002;32(1):1–7.

    Article  PubMed  Google Scholar 

  111. Rumsey JM, Duara R, Grady C, et al. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography. Arch Gen Psychiatry 1985;42(5):448–455.

    PubMed  CAS  Google Scholar 

  112. De Volder A, Bol A, Michel C, Congneau M, Goffinet AM. Brain glucose metabolism in children with the autistic syndrome: positron tomography analysis. Brain Dev 1987;9(6):581–587.

    PubMed  Google Scholar 

  113. Horwitz B, Rumsey JM, Grady CL, Rapoport SI. The cerebral metabolic landscape in autism. Intercorrelations of regional glucose utilization. Arch Neurol 1988;45(7):749–755.

    PubMed  CAS  Google Scholar 

  114. Zilbovicius M, Boddaert N, Belin P, et al. Temporal lobe dysfunction in childhood autism: a PET study. Positron emission tomography. Am J Psychiatry 2000;157(12):1988–1993.

    Article  PubMed  CAS  Google Scholar 

  115. Ohnishi T, Matsuda H, Hashimoto T, et al. Abnormal regional cerebral blood flow in childhood autism. Brain 2000;123(pt 9):1838–1844.

    Article  PubMed  Google Scholar 

  116. Mountz JM, Tolbert LC, Lill DW, Katholi CR, Liu HG. Functional deficits in autistic disorder: characterization by technetium-99m-HMPAO and SPECT. J Nucl Med 1995;36(7):1156–1162.

    PubMed  CAS  Google Scholar 

  117. Gillberg C, Bjure J, Vestergen E. SPECT in 31 children and adolescents with autism and autistic-like conditions. Eur Child Adolesc Psychiatry 1993;2:50–59.

    Article  Google Scholar 

  118. Herold S, Frackowiak RS, Le Couteur A, Rutter M, Howlin P. Cerebral blood flow and metabolism of oxygen and glucose in young autistic adults. Psychol Med 1988;18(4):823–831.

    Article  PubMed  CAS  Google Scholar 

  119. Zilbovicius M, Garreau B, Tzourio N, et al. Regional cerebral blood flow in childhood autism: a SPECT study. Am J Psychiatry 1992;149(7): 924–930.

    PubMed  CAS  Google Scholar 

  120. Chiron C, Leboyer M, Leon F, Jambaque I, Nuttin C, Syrota A. SPECT of the brain in childhood autism: evidence for a lack of normal hemispheric asymmetry. Dev Med Child Neurol 1995;37(10):849–860.

    Article  PubMed  CAS  Google Scholar 

  121. Zilbovicius M, Garreau B, Samson Y, et al. Delayed maturation of the frontal cortex in childhood autism. Am J Psychiatry 1995;152(2):248–252.

    PubMed  CAS  Google Scholar 

  122. Muller RA, Chugani DC, Behen ME, et al. Impairment of dentatothalamo- cortical pathway in autistic men: language activation data from positron emission tomography. Neurosci Lett 1998;245(1):1–4.

    Article  PubMed  CAS  Google Scholar 

  123. Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995;118(pt 1):279–306.

    Article  PubMed  Google Scholar 

  124. Haznedar MM, Buchsbaum MS, Metzger M, Solimando A, Spiegel-Cohen J, Hollander E. Anterior cingulate gyrus volume and glucose metabolism in autistic disorder. Am J Psychiatry 1997;154(8):1047–1050.

    PubMed  CAS  Google Scholar 

  125. Haznedar MM, Buchsbaum MS, Wei TC, et al. Limbic circuitry in patients with autism spectrum disorders studied with positron emission tomography and magnetic resonance imaging. Am J Psychiatry 2000;157(12): 1994–2001.

    Article  PubMed  CAS  Google Scholar 

  126. Garreau B, Zilbovicius M, Guerin P. Effects of auditory stimulation on regional cerebral blood flow in autistic children. Dev Brain Dysfunction 1994;7:119–128.

    Google Scholar 

  127. Boddaert N, Belin P, Chabane N, et al. Perception of complex sounds: abnormal pattern of cortical activation in autism. Am J Psychiatry 2003;160(11):2057–2060.

    Article  PubMed  Google Scholar 

  128. Boddaert N, Chabane N, Belin P, et al. Perception of complex sounds in autism: abnormal auditory cortical processing in children. Am J Psychiatry 2004;161(11):2117–2120.

    Article  PubMed  Google Scholar 

  129. Muller RA, Behen ME, Rothermel RD, et al. Brain mapping of language and auditory perception in high-functioning autistic adults: a PET study. J Autism Dev Disord 1999;29(1):19–31.

    Article  PubMed  CAS  Google Scholar 

  130. Chugani DC, Muzik O, Rothermel R, et al. Altered serotonin synthesis in the dentatothalamocortical pathway in autistic boys. Ann Neurol 1997; 42(4):666–669.

    Article  PubMed  CAS  Google Scholar 

  131. Fletcher PC, Happe F, Frith U, et al. Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition 1995;57(2):109–128.

    Article  PubMed  CAS  Google Scholar 

  132. Baron-Cohen S, Leslie AM, Frith U. Does the autistic child have a “theory of mind”? Cognition 1985;21(1):37–46.

    Article  PubMed  CAS  Google Scholar 

  133. Happe F, Ehlers S, Fletcher P, et al. “Theory of mind” in the brain. Evidence from a PET scan study of Asperger syndrome. Neuroreport 1996;8(1):197–201.

    Article  PubMed  CAS  Google Scholar 

  134. Schain RJ, Freedman DX. Studies on 5-hydroxyindole metabolism in autistic and other mentally retarded children. J Pediatr 1961;58:315–320.

    Article  PubMed  CAS  Google Scholar 

  135. McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 1996;53(11):993–1000.

    PubMed  CAS  Google Scholar 

  136. Gordon CT, State RC, Nelson JE, Hamburger SD, Rapoport JL. A doubleblind comparison of clomipramine, desipramine, and placebo in the treatment of autistic disorder. Arch Gen Psychiatry 1993;50(6):441–447.

    PubMed  CAS  Google Scholar 

  137. Cook EH Jr, Rowlett R, Jaselskis C, Leventhal BL. Fluoxetine treatment of children and adults with autistic disorder and mental retardation. J Am Acad Child Adolesc Psychiatry 1992;31(4):739–745.

    Article  PubMed  Google Scholar 

  138. McDougle CJ, Naylor ST, Cohen DJ, Volkmar FR, Heninger GR, Price LH. A double-blind, placebo-controlled study of fluvoxamine in adults with autistic disorder. Arch Gen Psychiatry 1996;53(11):1001–1008.

    PubMed  CAS  Google Scholar 

  139. Chugani DC, Muzik O, Behen M, et al. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 1999;45(3):287–295.

    Article  PubMed  CAS  Google Scholar 

  140. Chugani DC, Behen M, Asano E, et al. Behavioral subtypes of autistic children show differences in regional brain serotonin synthesis. Soc Neurosci Abstracts 2000;26(1–2).

    Google Scholar 

  141. Dow RS. Cerebellar cognition. Neurology 1995;45(9):1785–1786.

    PubMed  CAS  Google Scholar 

  142. Cohen P, Cohen J, Kasen S, et al. An epidemiological study of disorders in late childhood and adolescence—I. Age- and gender-specific prevalence. J Child Psychol Psychiatry 1993;34(6):851–867.

    Article  PubMed  CAS  Google Scholar 

  143. Kimbrell TA, George MS, Parekh PI, et al. Regional brain activity during transient self-induced anxiety and anger in healthy adults. Biol Psychiatry 1999;46(4):454–465.

    Article  PubMed  CAS  Google Scholar 

  144. Chua P, Krams M, Toni I, Passingham R, Dolan R. A functional anatomy of anticipatory anxiety. Neuroimage 1999;9(6 pt 1):563–571.

    Article  PubMed  CAS  Google Scholar 

  145. Osuch EA, Ketter TA, Kimbrell TA, et al. Regional cerebral metabolism associated with anxiety symptoms in affective disorder patients. Biol Psychiatry 2000;48(10):1020–1023.

    Article  PubMed  CAS  Google Scholar 

  146. Nordahl TE, Semple WE, Gross M, et al. Cerebral glucose metabolic differences in patients with panic disorder. Neuropsychopharmacology 1990;3(4):261–272.

    PubMed  CAS  Google Scholar 

  147. Reiman EM, Raichle ME, Butler FK, Herscovitch P, Robins E. A focal brain abnormality in panic disorder, a severe form of anxiety. Nature 1984; 310(5979):683–685.

    Article  PubMed  CAS  Google Scholar 

  148. Reiman EM, Raichle ME, Robins E, et al. The application of positron emission tomography to the study of panic disorder. Am J Psychiatry 1986;143(4):469–477.

    PubMed  CAS  Google Scholar 

  149. Abadie P, Boulenger JP, Benali K, Barre L, Zarifian E, Baron JC. Relationships between trait and state anxiety and the central benzodiazepine receptor: a PET study. Eur J Neurosci 1999;11(4):1470–1478.

    Article  PubMed  CAS  Google Scholar 

  150. Malizia AL, Cunningham VJ, Bell CJ, Liddle PF, Jones T, Nutt DJ. Decreased brain GABA(A)-benzodiazepine receptor binding in panic disorder: preliminary results from a quantitative PET study. Arch Gen Psychiatry 1998;55(8):715–720.

    Article  PubMed  CAS  Google Scholar 

  151. Neumeister A, Bain E, Nugent AC, et al. Reduced serotonin type 1Areceptor binding in panic disorder. J Neurosci 2004;24(3):589–591.

    Article  PubMed  CAS  Google Scholar 

  152. Rauch SL, Savage CR, Alpert NM, Fischman AJ, Jenike MA. The functional neuroanatomy of anxiety: a study of three disorders using positron emission tomography and symptom provocation. Biol Psychiatry 1997;42(6):446–452.

    Article  PubMed  CAS  Google Scholar 

  153. Lucey JV, Costa DC, Adshead G, et al. Brain blood flow in anxiety disorders. OCD, panic disorder with agoraphobia, and post-traumatic stress disorder on 99mTcHMPAO single photon emission tomography (SPET). Br J Psychiatry 1997;171:346–350.

    Article  PubMed  CAS  Google Scholar 

  154. Baxter LR Jr, Schwartz JM, Bergman KS, et al. Caudate glucose metabolic rate changes with both drug and behavior therapy for obsessivecompulsive disorder. Arch Gen Psychiatry 1992;49(9):681–689.

    PubMed  CAS  Google Scholar 

  155. Schwartz JM, Stoessel PW, Baxter LR Jr, Martin KM, Phelps ME. Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder. Arch Gen Psychiatry 1996;53(2):109–113.

    PubMed  CAS  Google Scholar 

  156. Swedo SE, Pietrini P, Leonard HL, et al. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Revisualization during pharmacotherapy. Arch Gen Psychiatry 1992;49(9):690–694.

    PubMed  CAS  Google Scholar 

  157. Swedo SE, Schapiro MB, Grady CL, et al. Cerebral glucose metabolism in childhood-onset obsessive-compulsive disorder. Arch Gen Psychiatry 1989;46(6):518–523.

    PubMed  CAS  Google Scholar 

  158. Videbech P. PET measurements of brain glucose metabolism and blood flow in major depressive disorder: a critical review. Acta Psychiatr Scand 2000;101(1):11–20.

    Article  PubMed  CAS  Google Scholar 

  159. Baxter LR Jr, Phelps ME, Mazziotta JC, et al. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 1985;42(5): 441–447.

    PubMed  Google Scholar 

  160. Baxter LR Jr, Schwartz JM, Phelps ME, et al. Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 1989;46(3):243–250.

    PubMed  CAS  Google Scholar 

  161. Martinot JL, Hardy P, Feline A, et al. Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 1990;147(10): 1313–1317.

    PubMed  CAS  Google Scholar 

  162. Hurwitz TA, Clark C, Murphy E, Klonoff H, Martin WR, Pate BD. Regional cerebral glucose metabolism in major depressive disorder. Can J Psychiatry 1990;35(8):684–688.

    PubMed  CAS  Google Scholar 

  163. Mayberg HS, Brannan SK, Mahurin RK, et al. Cingulate function in depression: a potential predictor of treatment response. Neuroreport 1997;8(4):1057–1061.

    Article  PubMed  CAS  Google Scholar 

  164. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci 1992;12(9):3628–3641.

    PubMed  CAS  Google Scholar 

  165. Abercrombie HC, Schaefer SM, Larson CL, et al. Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport 1998;9(14):3301–3307.

    Article  PubMed  CAS  Google Scholar 

  166. Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME. Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 2002;71(3):431–447.

    Article  PubMed  CAS  Google Scholar 

  167. Smith GS, Reynolds CF 3rd, Pollock B, et al. Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression. Am J Psychiatry 1999;156(5): 683–689.

    PubMed  CAS  Google Scholar 

  168. Wu JC, Gillin JC, Buchsbaum MS, Hershey T, Johnson JC, Bunney WE Jr. Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 1992;149(4):538–543.

    PubMed  CAS  Google Scholar 

  169. Biver F, Goldman S, Delvenne V, et al. Frontal and parietal metabolic disturbances in unipolar depression. Biol Psychiatry 1994;36(6):381–388.

    Article  PubMed  CAS  Google Scholar 

  170. Bench CJ, Friston KJ, Brown RG, Frackowiak RS, Dolan RJ. Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 1993;23(3): 579–590.

    Article  PubMed  CAS  Google Scholar 

  171. Brody AL, Saxena S, Stoessel P, et al. Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch Gen Psychiatry 2001; 58(7):631–640.

    Article  PubMed  CAS  Google Scholar 

  172. Martin SD, Martin E, Rai SS, Richardson MA, Royall R. Brain blood flow changes in depressed patients treated with interpersonal psychotherapy or venlafaxine hydrochloride: preliminary findings. Arch Gen Psychiatry 2001;58(7):641–648.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Glanzman, M., Elia, J. (2006). Neurodevelopmental and Neuropsychiatric Disorders. In: Charron, M. (eds) Pediatric PET Imaging. Springer, New York, NY. https://doi.org/10.1007/0-387-34641-4_19

Download citation

  • DOI: https://doi.org/10.1007/0-387-34641-4_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-28836-9

  • Online ISBN: 978-0-387-34641-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics