Skip to main content

Optimality conditions for bilevel programming problems

  • Chapter
Optimization with Multivalued Mappings

Summary

Focus in the paper is on optimality conditions for bilevel programming problems. We start with a general condition using tangent cones of the feasible set of the bilevel programming problem to derive such conditions for the optimistic bilevel problem. More precise conditions are obtained if the tangent cone possesses an explicit description as it is possible in the case of linear lower level problems. If the optimal solution of the lower level problem is a PC 1-function, sufficient conditions for a global optimal solution of the optimistic bilevel problem can be formulated. In the second part of the paper relations of the bilevel programming problem to set-valued optimization problems and to mathematical programs with equilibrium constraints are given which can also be used to formulate optimality conditions for the original problem. Finally, a variational inequality approach is described which works well when the involved functions are monotone. It consists in a variational re-formulation of the optimality conditions and looking for a solution of the thus obtained variational inequality among the points satisfying the initial constraints. A penalty function technique is applied to get a sequence of approximate solutions converging to a solution of the original problem with monotone operators.

on leave from the Central Economics and Mathematics Institute (CEMI) of the Russian Academy of Sciences, Nakhimovsky prospect 47, Moscow 117418, Russian Federation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. Bard (1998): Practical Bilevel Optimization: Algorithms and Applications, Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  2. G.Y. Chen and J. Jahn (eds.) (1998), Mathematical Methods of Operations Research, vol. 48.

    Google Scholar 

  3. G. Y. Chen and J. Jahn (1998). Optimality conditions for set-valued optimization problems. Mathematical Methods of Operations Research, 48: 187–200.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Dempe (1992). A necessary and a sufficient optimality condition for bilevel programming problems. Optimization, 25: 341–354.

    MATH  MathSciNet  Google Scholar 

  5. S. Dempe (2002): Foundations of Bilevel Programming, Dordrecht: Kluwer Academic Publishers, 2002.

    MATH  Google Scholar 

  6. S. Dempe (2003). Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints, Optimization, 52:, 333–359.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Dempe, J. Dutta, S. Lohse (2005) Optimality conditions for bilevel programming problems, Preprint, TU Bergakademie Freiberg.

    Google Scholar 

  8. S. Dempe, S. Lohse: Inverse linear programming, In: Recent Advances in Optimization. Proceedings of the 12th French-German-Spanish Conference on Optimization held in Avignon, September 20–24, 2004, Edited by A. Seeger. Lectures Notes in Economics and Mathematical Systems, Vol. 563, Springer-Verlag Berlin Heidelberg, 2006. pp. 19–28.

    Google Scholar 

  9. S. Dempe, T. Unger (1999). Generalized PC 1-functions, Optimization, 46:311–326.

    MATH  MathSciNet  Google Scholar 

  10. V.F. Dem’yanov and A.M. Rubinov (1986): Quasidifferential Calculus, New York: Optimization Software.

    Google Scholar 

  11. A. Dontchev and R. T. Rockafellar (2001). Ample parametrization of variational inclusions, SIAM Journal on Optimization, 12: 170–187.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Dutta and S. Dempe (2004). Global minima of locally Lipschitz functions, KANGAL Research Report No. 2004/018, I.I.T. Kanpur, India, 2004.

    Google Scholar 

  13. J. Dutta, S. Dempe (2006). Bilevel programming with convex lower level problems, In: S. Dempe, V. Kalashnikov (eds.): Optimization with Multivalued Mappings: Theory, Applications and Algorithms, Springer Verlag, Berlin.

    Google Scholar 

  14. B.C. Eaves (1971). On the basic theorem of complementarity, Mathematical Programming, 1: 68–75.

    Article  MATH  MathSciNet  Google Scholar 

  15. D. Fanghänel (2006). Optimality criteria for bilevel programming problems using the radial subdifferential, In: S. Dempe, V. Kalashnikov (eds.): Optimization with Multivalued Mappings: Theory, Applications and Algorithms, Springer Verlag, Berlin.

    Google Scholar 

  16. M. L. Flegel and C. Kanzow (2003). A Fritz John approach to first order optimality conditions for mathematical programs with equilibrium constraints, Optimization, 52: 277–286.

    Article  MATH  MathSciNet  Google Scholar 

  17. M. L. Flegel and C. Kanzow. On the Guignard constraint qualification for mathematical programs with equilibrium constraints, Optimization, to appear.

    Google Scholar 

  18. M. L. Flegel and C. Kanzow. On M-stationarity for mathematical programs with equilibrium constraints, Journal of Mathematical Analysis and Applications, to appear.

    Google Scholar 

  19. M. L. Flegel and C. Kanzow (2005). Abadie-type constraint qualification for mathematical programs with equilibrium constraints, Journal of Optimization Theory and Applications, 124: 595–614.

    Article  MATH  MathSciNet  Google Scholar 

  20. P.T. Harker and S.-C. Choi (1991). A penalty function approach for mathematical programs with variational inequality constraints, Information and Decision Technologies, 17: 41–50.

    MATH  MathSciNet  Google Scholar 

  21. P.T. Harker and J.-S. Pang (1988). Existence of optimal solutions to mathematical programs with equilibrium constraints, Operations Research Letters, 7: 61–64.

    Article  MATH  MathSciNet  Google Scholar 

  22. P.T. Harker and J.-S. Pang (1990). Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Mathematical Programming, 48: 161–220.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Jahn (2000). Set-valued optimization: a survey, Preprint, Universität Erlangen-Nürnberg. Institut für Angewandte Mathematik.

    Google Scholar 

  24. G. Isac, V.A. Bulavsky and V.V. Kalashnikov (2002). Complementarity, Equilibrium, Efficiency and Economics, Kluwer Academic Publishers, Dordrecht/Boston/London, 468 p.

    MATH  Google Scholar 

  25. V.V. Kalashnikov and N.I. Kalashnikova (1996). Solving two-level variational inequality, Journal of Global Optimization, 8: 289–294.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. Karamardian (1976). Complementarity over cones with monotone and pseudo-monotone maps, Journal of Optimization Theory and Applications, 18: 445–454.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Karamardian (1976). An existence theorem for the complementarity problem, Journal of Optimization Theory and Applications, 18: 455–464.

    Article  MathSciNet  Google Scholar 

  28. M. Kojima (1980). Strongly stable stationary solutions in nonlinear programs. In: S.M. Robinson (ed.): Analysis and Computation of Fixed Points, New York: Academic Press, pp. 93–138.

    Google Scholar 

  29. D. Klatte and B. Kummer (2002). Nonsmooth Equations in Optimization; Regularity, Calculus, Methods and Applications, Dordrecht: Kluwer Academic Publishers.

    MATH  Google Scholar 

  30. A. B. Levy and R. T. Rockafellar (1995). Sensitivity of solutions in nonlinear programming problems with nonunique multipliers. In: D.-Z. Du and L. Qi and R. S. Womersley (eds.): Recent Advances in Nonsmooth Optimization, World Scientific Publishing Co., Singapore et al., 215–223.

    Google Scholar 

  31. S. Lohse: Komplexitätsbeweis. Technical Report, TU Bergakademie Freiberg, 2005. see http://www.mathe.tu-freiberg.de/~lohses/Dateien/komplex.pdf

    Google Scholar 

  32. P. Loridan and J. Morgan (1996). Weak via strong Stackelberg problem: New results. Journal of Global Optimization, 8: 263–287.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. Lucchetti and F. Mignanego and G. Pieri (1987). Existence theorem of equilibrium points in Stackelberg games with constraints. Optimization, 18: 857–866.

    MATH  MathSciNet  Google Scholar 

  34. Z.-Q. Luo and J.-S. Pang and D. Ralph (1996). Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  35. J. A. Mirrlees (1999). The theory of moral hazard and unobservable bevaviour: part I. Review of Economic Studies, 66: 3–21.

    Article  MATH  Google Scholar 

  36. J.V. Outrata (1994). On optimization problems with variational inequality constraints, SIAM Journal on Optimization, 4: 340–357.

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Outrata and M. Kočvara and J. Zowe (1998). Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  38. D. Ralph and S. Dempe (1995). Directional Derivatives of the Solution of a Parametric Nonlinear Program. Mathematical Programming, 70: 159–172.

    MATH  MathSciNet  Google Scholar 

  39. R.T. Rockafellar (1970). Convex Analysis, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  40. H. Scheel and S. Scholtes (2000). Mathematical programs with equilibrium constraints: stationarity, optimality, and sensitivity. Mathematics of Operations Research, 25: 1–22.

    Article  MATH  MathSciNet  Google Scholar 

  41. M.J. Smith (1984). A descent algorithm for solving monotone variational inequalities and monotone complementarity problems, Journal of Optimization Theory and Applications, 44: 485–496.

    Article  MATH  MathSciNet  Google Scholar 

  42. H. Tuy (1998). Convex Analysis and Global Optimization. Kluwer Academic Publishers, Dordrecht.

    MATH  Google Scholar 

  43. J. J. Ye (2005). Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints, Journal of Mathematical Analysis and Applications, 307: 350–369.

    Article  MATH  MathSciNet  Google Scholar 

  44. R. Zhang (1994). Problems of hierarchical optimization in finite dimensions, SIAM Journal on Optimization, 4: 521–536.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Dempe, S., Kalashnikov, V.V., Kalashnykova, N. (2006). Optimality conditions for bilevel programming problems. In: Dempe, S., Kalashnikov, V. (eds) Optimization with Multivalued Mappings. Springer Optimization and Its Applications, vol 2. Springer, Boston, MA . https://doi.org/10.1007/0-387-34221-4_1

Download citation

Publish with us

Policies and ethics