Skip to main content

Protein Crosstalk in Lipid Rafts

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 584))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. A.D. Beyers, L.L. Spruyt, and A.F. Williams, Molecular associations between the Tlymphocyte antigen receptor complex and the surface antigens CD2, CD4, or CD8 and CD5, Proc. Natl. Acad. Sci. USA, 89, 2945–2949 (1992).

    Article  PubMed  CAS  Google Scholar 

  2. C. Montixi, C. Langlet, A.M. Bernard, J. Thimonier, C. Dubois, M.A. Wurbel, J.P. Chauvin, M. Pierres, and H.T. He. Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains, EMBO J., 17, 5334–5348 (1998).

    Article  PubMed  CAS  Google Scholar 

  3. R. Xavier, T. Brennan, Q. Li, C. McCormack, and B. Seed, Membrane compartmentation is required for efficient T cell activation, Immunity, 8, 723–732 (1998).

    Article  PubMed  CAS  Google Scholar 

  4. K. Simons, and E. Ikonen, Functional rafts in cell membranes, Nature, 387, 569–572 (1997).

    Article  PubMed  CAS  Google Scholar 

  5. D.A. Brown, and E. London, Functions of lipid rafts in biological membranes, Annu. Rev. Cell Dev. Biol., 14, 111–136 (1998).

    Article  PubMed  CAS  Google Scholar 

  6. P.S. Kabouridis, A.I. Magee, and S.C. Ley, S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes, EMBO J., 16, 4983–4998 (1997).

    Article  PubMed  CAS  Google Scholar 

  7. R.D. Klausner, A.M. Kleinfeld, R.L. Hoover, and M.J. Karnovsky, Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis, J. Biol. Chem., 255, 1286–1295 (1980).

    PubMed  CAS  Google Scholar 

  8. D.A. Brown, and J.K. Rose, Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, 68, 533–544 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. R.J. Schroeder, S.N. Ahmed, Y. Zhu, E. London, and D.A. Brown, Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositolanchored proteins by promoting the formation of detergent-insoluble ordered membrane domains, J Biol Chem, 273, 1150–1157 (1998).

    Article  PubMed  CAS  Google Scholar 

  10. S. Munro, Lipid Rafts: Elusive or Illusive? Cell, 115,377 (2003).

    Google Scholar 

  11. H. Heerklotz, Triton promotes domain formation in lipid raft mixtures, Biophys. J. 83, 2693–701 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. S. Schuck, M. Honsho, K. Ekroos, A. Shevchenko, and K. Simons, Resistance of cell membranes to different detergents, Proc. Natl. Acad. Sci. USA, 100, 5795–800 (2003).

    Article  PubMed  CAS  Google Scholar 

  13. R.J. Schroeder, S.N. Ahmed, Y. Zhu, E. London, and D.A. Brown, Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositolanchored proteins by promoting the formation of detergent-insoluble ordered membrane domains, J. Biol. Chem., 273, 1150–1157 (1998).

    Article  PubMed  CAS  Google Scholar 

  14. A. Pralle, P. Keller, E.L. Florin, K. Simons, and J.K. Horber, Sphingolipidcholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells, J. Cell Biol., 148, 997–1008 (2000).

    Article  PubMed  CAS  Google Scholar 

  15. T. Harder, P. Scheiffele, P. Verkade, and K. Simons, Lipid domain structure of the plasma membrane revealed by patching of membrane components, J. Cell Biol., 141, 929–942 (1998).

    Article  PubMed  CAS  Google Scholar 

  16. S. Manes, E. Mira, C. Gomez-Mouton, R.A. Lacalle, P. Keller, J.P. Labrador, and A.C. Martinez, Membrane raft microdomains mediate front-rear polarity in migrating cells, EMBO J., 18, 6211–6220 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. A.K. Kenworthy, N. Petranova, and M. Edidin, High-resolution FRET microscopy of cholera toxin B-subunit and GPI-anchored proteins in cell plasma membranes, Mol. Biol. Cell, 11, 1645–1655 (2000).

    PubMed  CAS  Google Scholar 

  18. R. Varma, and S. Mayor, GPI-anchored proteins are organized in submicron domains at the cell surface, Nature, 394, 798 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. D.A. Zacharias, J.D. Violin, A.C. Newton, and R.Y. Tsien, Partitioning of lipidmodified monomeric GFPs into membrane microdomains of live cells, Science, 296, 913–916 (2002).

    Article  PubMed  CAS  Google Scholar 

  20. P. Sharma, R. Varma, R.C. Sarasij, Ira, K. Gousset, G. Krishnamoorthy, M. Rao, and S. Mayor, Nanoscale organization of multiple GPI-anchored proteins in living cell membranes, Cell, 116, 577 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. D.E. Shvartsman, M. Kotler, R.D. Tall, M.G. Roth, and Y.I. Henis, Differently anchored influenza hemagglutinin mutants display distinct interaction dynamics with mutual rafts, J. Cell Biol., 163, 879–888 (2003).

    Article  PubMed  CAS  Google Scholar 

  22. A.K. Kenworthy, B.J. Nichols, C.L. Remmert, G.M. Hendrix, M. Kumar, J. Zimmerberg, and J. Lippincott-Schwartz, Dynamics of putative raft-associated proteins at the cell surface, J. Cell Biol., 165, 735–746 (2004).

    Article  PubMed  CAS  Google Scholar 

  23. G.J. Schutz, G. Kada, V.P. Pastushenko, and H. Schindler, Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy, EMBO J, 19, 892–901 (2000).

    Article  PubMed  CAS  Google Scholar 

  24. C. Dietrich, B. Yang, T. Fujiwara, A. Kusumi, and K. Jacobson, Relationship of lipid rafts to transient confinement zones detected by single particle tracking, Biophys. J., 82, 274–284 (2002).

    PubMed  CAS  Google Scholar 

  25. T. Fujiwara, K. Ritchie, H. Murakoshi, K. Jacobson, and A. Kusumi, Phospholipids undergo hop diffusion in compartmentalized cell membrane, J. Cell Biol., 157, 1071–1082 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. G.J. Schutz, H. Schindler, and T. Schmidt, Single-molecule microscopy on model membranes reveals anomalous diffusion, Biophys. J., 73, 1073–1080 (1997).

    PubMed  CAS  Google Scholar 

  27. A.D. Douglass, and R.D. Vale, Single-Molecule Microscopy Reveals Plasma Membrane Microdomains Created by Protein-Protein Networks that Exclude or Trap Signaling Molecules in T Cells, Cell, 121, 937–950 (2005).

    Article  PubMed  CAS  Google Scholar 

  28. M.L. Dustin, M.W. Olszowy, A.D. Holdorf, J. Li, S. Bromley, N. Desai, P. Widder, F. Rosenberger, P.A. van der Merwe, P.M. Allen, and A.S. Shaw, A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts, Cell, 94, 667–677 (1998).

    Article  PubMed  CAS  Google Scholar 

  29. W. Zhang, R.P. Trible, and L.E. Samelson, LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation, Immunity, 9, 239–246 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. T. Brdicka, D. Pavlistova, A. Leo, E. Bruyns, V. Korinek, P. Angelisova, J. Scherer, A. Shevchenko, I. Hilgert, J. Cerny, K. Drbal, Y. Kuramitsu, B. Kornacker, V. Horejsi, and B. Schraven, Phosphoprotein associated with glycosphingolipid-enriched microdomains (PAG), a novel ubiquitously expressed transmembrane adaptor protein, binds the protein tyrosine kinase csk and is involved in regulation of T cell activation, J. Exp. Med., 191, 1591–1604 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. D. Filipp, J. Zhang, B.L. Leung, S. Shaw, S.D. Levin, A. Veillette, and M. Julius, Regulation of Fyn through translocation of activated Lck into lipid rafts, J. Exp. Med., 197, 1221–1227 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. P. Pizzo, E. Giurisato, A. Bigsten, M. Tassi, R. Tavano, A. Shaw, and S. Viola, Physiological T cell activation starts and propagates in lipid rafts, Immunol. Lett., 91, 3–9 (2004).

    Article  PubMed  CAS  Google Scholar 

  33. M. Zhu, S. Shen, Y. Liu, O. Granillo, and W. Zhang, Cutting edge: localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development, J. Immunol., 174, 31–35 (2005).

    PubMed  CAS  Google Scholar 

  34. S. Valitutti, M. Dessing, K. Aktories, H. Gallati, and A. Lanzavecchia, Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton, J. Exp. Med., 181, 577–584 (1995).

    Article  PubMed  CAS  Google Scholar 

  35. M. Moran, and M.C. Miceli, Engagement of GPI-linked CD48 contributes to TCR signals and cytoskeletal reorganization: a role for lipid rafts in T cell activation, Immunity, 9, 787–796 (1998).

    Article  PubMed  CAS  Google Scholar 

  36. E. Giurisato, D.P. McIntosh, M. Tassi, A. Gamberucci, and A. Benedetti, T cell receptor can be recruited to a subset of plasma membrane rafts, independently of cell signaling and attendantly to raft clustering, J. Biol. Chem., 278, 6771–6778 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. P. Drevot, C. Langlet, X.J. Guo, A.M. Bernard, O. Colard, J.P. Chauvin, R. Lasserre, and H.T. He, TCR signal initiation machinery is pre-assembled and activated in a subset of membrane rafts, EMBO J., 21, 1899–1908 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. P. Munoz, M.D. Navarro, E.J. Pavon, J. Salmeron, F. Malavasi, J. Sancho, and M. Zubiaur, CD38 signaling in T cells is initiated within a subset of membrane rafts containing Lck and the CD3-zeta subunit of the T cell antigen receptor, J. Biol. Chem., 278, 50791–50802 (2003).

    Article  PubMed  CAS  Google Scholar 

  39. R. Xavier, and B. Seed, Membrane compartmentation and the response to antigen, Curr. Opin. Immunol., 11, 265–269 (1999).

    Article  PubMed  CAS  Google Scholar 

  40. J. Mestas, and C.C.W. Hughes, Endothelial cell costimulation of T cell activation through CD58-CD2 interactions involves lipid raft aggregation, J. Immunol., 167, 4378–4385 (2001).

    PubMed  CAS  Google Scholar 

  41. Y. Yashiro-Ohtani, X.Y. Zhou, K. Toyo-Oka, X.G. Tai, C.S. Park, T. Hamaoka, R. Abe, K. Miyake, and H. Fujiwara, Non-CD28 costimulatory molecules present in T cell rafts induce T cell costimulation by enhancing the association of TCR with rafts, J. Immunol., 164, 1251–1259 (2000).

    PubMed  CAS  Google Scholar 

  42. A. Viola, S. Schroeder, Y. Sakakibara, and A. Lanzavecchia, T lymphocyte costimulation mediated by reorganization of membrane microdomains, Science, 283, 680–682 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. C. Wulfing, and M.M. Davis, A receptor/cytoskeletal movement triggered by costimulation during T cell activation, Science, 282, 2266–2269 (1998).

    Article  PubMed  CAS  Google Scholar 

  44. A. Arcaro, C. Gregoire, T.R. Bakker, L. Baldi, M. Jordan, L. Goffin. N. Boucheron, f. Wurm, P.A. van der Merwe, B. Malissen, and I.F. Luescher, CD8beta endows cd8 with efficient coreceptor function by coupling T cell receptor/CD3 to raft-associated CD8/p56lck complexes, J. Exp. Med., 194, 1485–1495 (2001).

    Article  PubMed  CAS  Google Scholar 

  45. G.M. Bell, J. Fargnoli, J.B. Bolen, L. Kish, and J.B. Imboden, The SH3 domain of p56lck binds to proline-rich sequences in the cytoplasmic domain of CD2, J. Exp. Med., 183, 169–178 (1996).

    Article  PubMed  CAS  Google Scholar 

  46. A.M. Carmo, D.W. Mason, and A.D. Beyers, Physical association of the cytoplasmic domain of CD2 with the tyrosine kinases p56lck and p59fyn, Eur. J. Immunol., 23, 2196–2201 (1993).

    PubMed  CAS  Google Scholar 

  47. A.M. Carmo, R.J. Nunes, M. Bamberger, A.R. Maia, M.I. Oliveira, and M.A.A. Castro, Lck-dependent and independent mechanisms in the activation-induced translocation of T lymphocyte accessory molecules to lipid rafts, FASEB J., 19(Part 1 Suppl. S), A389 (2005).

    Google Scholar 

  48. L. Kuerschner, C.S. Ejsing, K. Ekroos, A. Shevchenko, K.I. Anderson, and C. Thiele, Polyene-lipids: a new tool to image lipids, Nat. Methods, 2, 39–45 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Nunes, R.J., Castro, M.A.A., Carmo, A.M. (2006). Protein Crosstalk in Lipid Rafts. In: Tsoukas, C. (eds) Lymphocyte Signal Transduction. Advances in Experimental Medicine and Biology, vol 584. Springer, Boston, MA. https://doi.org/10.1007/0-387-34132-3_10

Download citation

Publish with us

Policies and ethics