Skip to main content

Neurofilaments

Phosphorylation and Signal Transduction

  • Chapter
Intermediate Filaments

Abstract

Neurofilaments belong to the Class IV family of Intermediate filaments and are neuron-specific. They are classed into three distinct groups according to their molecular masses; NF-H (heavy chain), NF-M (middle-chain) and NF-L (light chain). Together with microtubules and their associated proteins, neurofilaments make up the dynamic axonal cytoskeleton. Neurofilaments comprise a central alpha helical coil-coiled domain flanked by an amino terminal head domain and in the case of NF-H and NF-M, a hypervariable carboxy-terminal tail domain. Neurofilaments participate in dynamic properties of the axonal cytoskeleton such as axon outgrowth, axonal transport and the control of axonal caliber. They contain multiple phosphorylation sites in their amino-head and carboxy-tail domains that are phosphorylated topographically by a number of kinases and the phosphorylation of neurofilaments is related to their functions. Expression and phosphorylation of neurofilaments is developmentally regulated and most of the phosphorylation occurs in the tail domains in the mature nervous system. Kinases that have been found to phosphorylate neurofilaments include PKA, CKI, CKII CaMK and the proline directed kinases. The proline directed kinases such as Cdk5, members of the MAP kinase family (p38, SAPK and ERK1/2) and GSK3 phosphorylate the KSP repeats found in NF-M and NF-H tail domains. Aberrant hyperphosphorylation of neurofilaments in dendrites and cell bodies are seen in neurodegenerative diseases such as Amyotrophic Lateral Sclerosis, Alzheimer’s disease, Parkinson’s disease, Pick’s disease and Dementia with Lewy bodies. Thus, defects in compartmentalization of cytoskeletal protein phosphorylation may contribute to pathology seen in these diseases. Neurofilament phosphorylation is affected by signal transduction pathways. Calcium influx into neurons causes the phosphorylation of NF-M through the activation of the ERK1/2. Integrin mediated signaling also causes the phosphorylation of NF-H through the activation of Cdk5 activity. Recent studies have also shown that kinase cascades can be affected by myelin associated glycoprotein (MAG), a major glial protein found in periaxonal membranes of glial cells. MAG appears to be involved in bi-directional signaling affecting axonal properties such as axonal caliber, phosphorylation of neurofilaments and mediating the activity of ERK1/2 and Cdk5. Thus, signal transduction pathways are involved in the phosphorylation of the KSP repeats found in NF-M and NF-H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xu Z, Dong DL, Cleveland DW. Neuronal intermediate filaments: New progress on an old subject. Curr Opin Neurobiol 1994; 4(5):655–661.

    Article  PubMed  CAS  Google Scholar 

  2. Nixon RA, Shea TB. Dynamics of neuronal intermediate filaments: A developmental perspective. Cell Motil Cytoskeleton 1992; 22(2):81–91.

    Article  PubMed  CAS  Google Scholar 

  3. Pant HC, Floyd CC, Dosemeci A. Neurofilament protein phosphorylation: Topographic regulation and functions. Adv Second Messenger Phosphoprotein Res 1990; 24:393–398.

    PubMed  CAS  Google Scholar 

  4. Lee MK, Cleveland DW. Neuronal intermediate filaments. Annu Rev Neurosci 1996; 19:187–217.

    Article  PubMed  CAS  Google Scholar 

  5. Wuerker RB, Kirkpatrick JB. Neuronal microtubules, neurofilaments, and microfilaments. Int Rev Cytol 1972; 33:45–75.

    Article  PubMed  CAS  Google Scholar 

  6. Morris JR, Lasek RJ. Monomer-polymer equilibria in the axon: Direct measurement of tubulin and actin as polymer and monomer in axoplasm. J Cell Biol 1984; 98(6):2064–2076.

    Article  PubMed  CAS  Google Scholar 

  7. Morris JR, Lasek RJ. Stable polymers of the axonal cytoskeleton: The axoplasmic ghost. J Cell Biol 1982; 92(1):192–198.

    Article  PubMed  CAS  Google Scholar 

  8. Inagaki M, Gonda Y, Nishizawa K et al. Phosphorylation sites linked to glial filament disassembly in vitro locate in a nonalpha-helical head domain. J Biol Chem 1990; 265(8):4722–4729.

    PubMed  CAS  Google Scholar 

  9. Inagaki M, Shibata M. [Regulation of the assembly-disassembly of intermediate filaments]. Tanpakushitsu Kakusan Koso 1989; 34(12 Suppl):1462–1470.

    PubMed  CAS  Google Scholar 

  10. Tokutake S. On the assembly mechanism of neurofilaments. Int J Biochem 1990; 22(1):1–6.

    Article  PubMed  CAS  Google Scholar 

  11. Kitamura S, Ando S, Shibata M et al. Protein kinase C phosphorylation of desmin at four serine residues within the nonalpha-helical head domain. J Biol Chem 1989; 264(10):5674–5678.

    PubMed  CAS  Google Scholar 

  12. Shetty KT, Link WT, Pant HC. cdc2-like kinase from rat spinal cord specifically phosphorylates KSPXK motifs in neurofilament proteins: Isolation and characterization. Proc Natl Acad Sci USA 1993; 90(14):6844–6848.

    Article  PubMed  CAS  Google Scholar 

  13. Jaffe H, Veeranna, Shetty KT et al. Characterization of the phosphorylation sites of human high molecular weight neurofilament protein by electrospray ionization tandem mass spectrometry and database searching. Biochemistry 1998; 37(11):3931–3940.

    Article  PubMed  CAS  Google Scholar 

  14. Jaffe H, Sharma P, Grant P et al. Characterization of the phosphorylation sites of the squid (Loligo pealei) high-molecular-weight neurofilament protein from giant axon axoplasm. J Neurochem 2001; 76(4):1022–1031.

    Article  PubMed  CAS  Google Scholar 

  15. Bennett GS, Tapscott SJ, Kleinbart FA et al. Different proteins associated with 10-nanometer filaments in cultured chick neurons and nonneuronal cells. Science 1981; 212(4494):567–569.

    Article  PubMed  CAS  Google Scholar 

  16. Cochard P, Paulin D. Initial expression of neurofilaments and vimentin in the central and peripheral nervous system of the mouse embryo in vivo. J Neurosci 1984; 4(8):2080–2094.

    PubMed  CAS  Google Scholar 

  17. Boyne LJ, Fischer I, Shea TB. Role of vimentin in early stages of neuritogenesis in cultured hippocampal neurons. Int J Dev Neurosci 1996; 14(6):739–748.

    Article  PubMed  CAS  Google Scholar 

  18. Wong J, Oblinger MM. Differential regulation of peripherin and neurofilament gene expression in regenerating rat DRG neurons. J Neurosci Res 1990; 27(3):332–341.

    Article  PubMed  CAS  Google Scholar 

  19. Beaulieu JM, Robertson J, Julien JP. Interactions between peripherin and neurofilaments in cultured cells: Disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem Cell Biol 1999; 77(1):41–45.

    Article  PubMed  CAS  Google Scholar 

  20. Levavasseur F, Zhu Q, Julien JP. No requirement of alpha-internexin for nervous system development and for radial growth of axons. Brain Res Mol Brain Res 1999; 69(1):104–112.

    Article  PubMed  CAS  Google Scholar 

  21. Athlan ES, Sacher MG, Mushynski WE. Associations between intermediate filament proteins expressed in cultured dorsal root ganglion neurons. J Neurosci Res 1997; 47(3):300–310.

    Article  PubMed  CAS  Google Scholar 

  22. Benson DL, Mandell JW, Shaw G et al. Compartmentation of alpha-internexin and neurofilament triplet proteins in cultured hippocampal neurons. J Neurocytol 1996; 25(3):181–196.

    Article  PubMed  CAS  Google Scholar 

  23. Zhao Y, Szaro BG. The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis. J Neurosci 1995; 15(6):4629–4640.

    PubMed  CAS  Google Scholar 

  24. Breen KC, Anderton BH. Temporal expression of neurofilament polypeptides in differentiating neuroblastoma cells. Neuroreport 1991; 2(1):21–24.

    Article  PubMed  CAS  Google Scholar 

  25. Lindenbaum MH, Carbonetto S, Grosveld F et al. Transcriptional and post-transcriptional effects of nerve growth factor on expression of the three neurofilament subunits in PC-12 cells. J Biol Chem 1988; 263(12):5662–5667.

    PubMed  CAS  Google Scholar 

  26. Lindenbaum MH, Carbonetto S, Mushynski WE. Nerve growth factor enhances the synthesis, phosphorylation, and metabolic stability of neurofilament proteins in PC 12 cells. J Biol Chem 1987; 262(2):605–610.

    PubMed  CAS  Google Scholar 

  27. Hoffman PN, Cleveland DW, Griffin JW et al. Neurofilament gene expression: A major determinant of axonal caliber. Proc Natl Acad Sci USA 1987; 84(10):3472–3476.

    Article  PubMed  CAS  Google Scholar 

  28. Sakaguchi T, Okada M, Kitamura T et al. Reduced diameter and conduction velocity of myelinated fibers in the sciatic nerve of a neurofilament-deficient mutant quail. Neurosci Lett 1993; 153(1):65–68.

    Article  PubMed  CAS  Google Scholar 

  29. Nixon RA, Paskevich PA, Sihag RK et al. Phosphorylation on carboxyl terminus domains of neurofilament proteins in retinal ganglion cell neurons in vivo: Influences on regional neurofilament accumulation, interneurofilament spacing, and axon caliber. J Cell Biol 1994; 126(4):1031–1046.

    Article  PubMed  CAS  Google Scholar 

  30. Yamasaki H, Itakura C, Mizutani M. Hereditary hypotrophic axonopathy with neurofilament deficiency in a mutant strain of the Japanese quail. Acta Neuropathol (Berl) 1991; 82(6):427–434.

    Article  PubMed  CAS  Google Scholar 

  31. Xu Z, Marszalek JR, Lee MK et al. Subunit composition of neurofilaments specifies axonal diameter. J Cell Biol 1996; 133(5):1061–1069.

    Article  PubMed  CAS  Google Scholar 

  32. Zhu Q, Couillard-Despres S, Julien JP. Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol 1997; 148(1):299–316.

    Article  PubMed  CAS  Google Scholar 

  33. Sternberger LA, Sternberger NH. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Nad Acad Sci USA 1983; 80(19):6126–6130.

    Article  CAS  Google Scholar 

  34. Oblinger MM, Brady ST, McQuarrie IG et al. Cytotypic differences in the protein composition of the axonally transported cytoskeleton in mammalian neurons. J Neurosci 1987; 7(2):453–462.

    PubMed  CAS  Google Scholar 

  35. Pant HC, Veeranna. Neurofilament phosphorylation. Biochem Cell Biol 1995; 73(9–10):575–592.

    PubMed  CAS  Google Scholar 

  36. Lee VM, Otvos Jr L, Carden MJ et al. Identification of the major multiphosphorylation site in mammalian neurofilaments. Proc Natl Acad Sci USA 1988; 85(6):1998–2002.

    Article  PubMed  CAS  Google Scholar 

  37. Carden MJ, Goldstein ME, Bruce J et al. Studies of neurofilaments that accumulate in proximal axons of rats intoxicated with beta,beta′-iminodipropionitrile (IDPN). Neurochem Pathol 1987; 7(3):189–205.

    PubMed  CAS  Google Scholar 

  38. Willard M, Simon C. Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell 1983; 35(2 Pt 1):551–559.

    Article  PubMed  CAS  Google Scholar 

  39. Fischer I, Romano-Clarke G, Grynspan F. Calpain-mediated proteolysis of microtubule associated proteins MAP1B and MAP2 in developing brain. Neurochem Res 1991; 16(8):891–898.

    Article  PubMed  CAS  Google Scholar 

  40. Carden MJ, Trojanowski JQ, Schlaepfer WW et al. Two-stage expression of neurofilament polypeptides during rat neurogenesis with early establishment of adult phosphorylation patterns. J Neurosci 1987; 7(11):3489–3504.

    PubMed  CAS  Google Scholar 

  41. Lee VM, Carden MJ, Schlaepfer WW et al. Monoclonal antibodies distinguish several differentially phosphorylated states of the two largest rat neurofilament subunits (NF-H and NF-M) and demonstrate their existence in the normal nervous system of adult rats. J Neurosci 1987;7(11):3474–3488.

    PubMed  CAS  Google Scholar 

  42. Hisanaga S, Ikai A, Hirokawa N. Molecular architecture of the neurofilament. I. Subunit arrangement of neurofilament L protein in the intermediate-sized filament. J Mol Biol 1990; 211(4):857–869.

    Article  PubMed  CAS  Google Scholar 

  43. Liem RK, Hutchison SB. Purification of individual components of the neurofilament triplet: Filament assembly from the 70 000-dalton subunit. Biochemistry 1982; 21(13):3221–3226.

    Article  PubMed  CAS  Google Scholar 

  44. Heins S, Wong PC, Muller S et al. The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation. J Cell Biol 1993; 123(6 Pt 1):1517–1533.

    Article  PubMed  CAS  Google Scholar 

  45. Ching GY, Liem RK. Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J Cell Biol 1993; 122(6):1323–1335.

    Article  PubMed  CAS  Google Scholar 

  46. Sihag RK, Nixon RA. In vivo phosphorylation of distinct domains of the 70-kilodalton neurofilament subunit involves different protein kinases. J Biol Chem 1989; 264(1):457–464.

    PubMed  CAS  Google Scholar 

  47. Sihag RK, Nixon RA. Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments. Early turnover during axonal transport. J Biol Chem 1991; 266(28):18861–18867.

    PubMed  CAS  Google Scholar 

  48. Nakamura Y, Hashimoto R, Kashiwagi Y et al. Major phosphorylation site (Ser55) of neurofilament L by cyclic AMP-dependent protein kinase in rat primary neuronal culture. J Neurochem 2000; 74(3):949–959.

    Article  PubMed  CAS  Google Scholar 

  49. Gibb BJ, Brion JP, Brownlees J et al. Neuropathological abnormalities in transgenic mice harbouring a phosphorylation mutant neurofilament transgene. J Neurochem 1998; 70(2):492–500.

    Article  PubMed  CAS  Google Scholar 

  50. Hashimoto R, Nakamura Y, Goto H et al. Domain-and site-specific phosphorylation of bovine NF-L by Rho-associated kinase. Biochem Biophys Res Commun 1998; 245(2):407–411.

    Article  PubMed  CAS  Google Scholar 

  51. Dosemeci A, Floyd CC, Pant HC. Characterization of neurofilament-associated protein kinase activities from bovine spinal cord. Cell Mol Neurobiol 1990; 10(3):369–382.

    Article  PubMed  CAS  Google Scholar 

  52. Floyd CC, Grant P, Gallant PE et al. Principal neurofilament-associated protein kinase in squid axoplasm is related to casein kinase I. J Biol Chem 1991; 266(8):4987–4994.

    PubMed  CAS  Google Scholar 

  53. Hollander BA, Bennett GS, Shaw G. Localization of sites in the tail domain of the middle molecular mass neurofilament subunit phosphorylated by a neurofilament-associated kinase and by casein kinase I. J Neurochem 1996; 66(1):412–420.

    Article  PubMed  CAS  Google Scholar 

  54. Link WT, Dosemeci A, Floyd CC et al. Bovine neurofilament-enriched preparations contain kinase activity similar to casein kinase I—neurofilament phosphorylation by casein kinase I (CKI). Neurosci Lett 1993; 151(1):89–93.

    Article  PubMed  CAS  Google Scholar 

  55. Bennett GS, Quintana R. Identification of Ser-Pro and Thr-Pro phosphorylation sites in chicken neurofilament-M tail domain. J Neurochem 1997; 68(2):534–543.

    Article  PubMed  CAS  Google Scholar 

  56. Shaw G, Miller R, Wang DS et al. Characterization of additional casein kinase I sites in the C-terminal “tail” region of chicken and rat neurofilament-M. J Neurochem 1997; 69(4):1729–1737.

    Article  PubMed  CAS  Google Scholar 

  57. Serrano L, Diaz-Nido J, Wandosell F et al. Tubulin phosphorylation by casein kinase II is similar to that found in vivo. J Cell Biol 1987; 105(4):1731–1739.

    Article  PubMed  CAS  Google Scholar 

  58. Serrano L, Hernandez MA, Diaz-Nido J et al. Association of casein kinase II with microtubules. Exp Cell Res 1989; 181(1):263–272.

    Article  PubMed  CAS  Google Scholar 

  59. Nakamura Y, Hashimoto R, Kashiwagi Y et al. Casein kinase II is responsible for phosphorylation of NF-L at Ser-473. FEBS Lett 1999; 455(1–2):83–86.

    Article  PubMed  CAS  Google Scholar 

  60. Yoshimura Y, Aoi C, Yamauchi T. Investigation of protein substrates of Ca(2+)/calmodulin-dependent protein kinase II translocated to the postsynaptic density. Brain Res Mol Brain Res 2000; 81(1–2):118–128.

    Article  PubMed  CAS  Google Scholar 

  61. Lam KY, Law SY, Chu KM et al. Gastrointestinal autonomic nerve tumor of the esophagus. A clinicopathologic, immunohistochemical, ultrastructural study of a case and review of the literature. Cancer 1996; 78(8):1651–1659.

    Article  PubMed  CAS  Google Scholar 

  62. Bajaj NP, al-Sarraj ST, Leigh PN et al. Cyclin dependent kinase-5 (CDK-5) phosphorylates neurofilament heavy (NF-H) chain to generate epitopes for antibodies that label neurofilament accumulations in amyotrophic lateral sclerosis (ALS) and is present in affected motor neurones in ALS. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23(5):833–850.

    Article  PubMed  CAS  Google Scholar 

  63. Brownlees J, Yates A, Bajaj NP et al. Phosphorylation of neurofilament heavy chain side-arms by stress activated protein kinase-1b/Jun N-terminal kinase-3. J Cell Sci 2000; 113 (Pt 3):401–407.

    PubMed  CAS  Google Scholar 

  64. Giasson BI, Mushynski WE. Aberrant stress-induced phosphorylation of perikaryal neurofilaments. J Biol Chem 1996; 271(48):30404–30409.

    Article  PubMed  CAS  Google Scholar 

  65. Giasson BI, Mushynski WE. Study of proline-directed protein kinases involved in phosphorylation of the heavy neurofilament subunit. J Neurosci 1997; 17(24):9466–9472.

    PubMed  CAS  Google Scholar 

  66. Guidato S, Bajaj NP, Miller CC. Cellular phosphorylation of neurofilament heavy-chain by cyclin-dependent kinase-5 masks the epitope for monoclonal antibody N52. Neurosci Lett 1996; 217(2–3):157–160.

    Article  PubMed  CAS  Google Scholar 

  67. Guidato S, Tsai LH, Woodgett J et al. Differential cellular phosphorylation of neurofilament heavy side-arms by glycogen synthase kinase-3 and cyclin-dependent kinase-5. J Neurochem 1996; 66(4):1698–1706.

    Article  PubMed  CAS  Google Scholar 

  68. Li BS, Veeranna, Grant P et al. Calcium influx and membrane depolarization induce phosphorylation of neurofilament (NF-M) KSP repeats in PC 12 cells. Brain Res Mol Brain Res 1999; 70(1):84–91.

    Article  PubMed  CAS  Google Scholar 

  69. Li BS, Veeranna, Gu J et al. Activation of mitogen-activated protein kinases (Erk1 and Erk2) cascade results in phosphorylation of NF-M tail domains in transfected NIH 3T3 cells. Eur J Biochem 1999; 262(1):211–217.

    Article  PubMed  CAS  Google Scholar 

  70. Sharma M, Sharma P, Pant HC. CDK-5-mediated neurofilament phosphorylation in SHSY5Y human neuroblastoma cells. J Neurochem 1999; 73(1):79–86.

    Article  PubMed  CAS  Google Scholar 

  71. Roder HM, Eden PA, Ingram VM. Brain protein kinase PK40erk converts TAU into a PHF-like form as found in Alzheimer’s disease. Biochem Biophys Res Commun 1993; 193(2):639–647.

    Article  PubMed  CAS  Google Scholar 

  72. Sun D, Leung CL, Liem RK. Phosphorylation of the high molecular weight neurofilament protein (NF-H) by Cdk5 and p35. J Biol Chem 1996; 271(24):14245–14251.

    Article  PubMed  CAS  Google Scholar 

  73. Veeranna, Amin ND, Ahn NG et al. Mitogen-activated protein kinases (Erk1,2) phosphorylate Lys-Ser-Pro (KSP) repeats in neurofilament proteins NF-H and NF-M. J Neurosci 1998; 18(11):4008–4021.

    PubMed  CAS  Google Scholar 

  74. Pant AC, Veeranna, Pant HC et al. Phosphorylation of human high molecular weight neurofilament protein (hNF-H) by neuronal cyclin-dependent kinase 5 (cdk5). Brain Res 1997; 765(2):259–266.

    Article  PubMed  CAS  Google Scholar 

  75. Brady ST. Neurofilaments run sprints not marathons. Nat Cell Biol 2000; 2(3):E43–45.

    Article  PubMed  CAS  Google Scholar 

  76. Nixon RA. Dynamic behavior and organization of cytoskeletal proteins in neurons: Reconciling old and new findings. Bioessays 1998; 20(10):798–807.

    Article  PubMed  CAS  Google Scholar 

  77. Nixon RA. The slow axonal transport debate. Trends Cell Biol 1998; 8(3):100.

    Article  PubMed  CAS  Google Scholar 

  78. Nixon RA. The slow axonal transport of cytoskeletal proteins. Curr Opin Cell Biol 1998; 10(1):87–92.

    Article  PubMed  CAS  Google Scholar 

  79. Yabe JT, Jung C, Chan WK et al. Phospho-dependent association of neurofilament proteins with kinesin in situ. Cell Motil Cytoskeleton 2000; 45(4):249–262.

    Article  PubMed  CAS  Google Scholar 

  80. Yabe JT, Pimenta A, Shea TB. Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J Cell Sci 1999; 112 (Pt 21):3799–3814.

    PubMed  CAS  Google Scholar 

  81. Yabe JT, Chylinski T, Wang FS et al. Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, bundling, and axonal transport rate in growing axonal neurites. J Neurosci 2001; 21(7):2195–2205.

    PubMed  CAS  Google Scholar 

  82. Shah JV, Flanagan LA, Janmey PA et al. Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol Biol Cell 2000; 11(10):3495–3508.

    PubMed  CAS  Google Scholar 

  83. Roy S, Coffee P, Smith G et al. Neurofilaments are transported rapidly but intermittently in axons: Implications for slow axonal transport. J Neurosci 2000; 20(18):6849–6861.

    PubMed  CAS  Google Scholar 

  84. Wang L, Ho CL, Sun D et al. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat Cell Biol 2000; 2(3):137–141.

    Article  PubMed  CAS  Google Scholar 

  85. Yabe JT, Chan WK, Chylinski TM et al. The predominant form in which neurofilament subunits undergo axonal transport varies during axonal initiation, elongation, and maturation. Cell Motil Cytoskeleton 2001; 48(1):61–83.

    Article  PubMed  CAS  Google Scholar 

  86. Koehnle TJ, Brown A. Slow axonal transport of neurofilament protein in cultured neurons. J Cell Biol 1999; 144(3):447–458.

    Article  PubMed  CAS  Google Scholar 

  87. Jung C, Yabe JT, Lee S et al. Hypophosphorylated neurofilament subunits undergo axonal transport more rapidly than more extensively phosphorylated subunits in situ. Cell Motil Cytoskeleton 2000; 47(2):120–129.

    Article  PubMed  CAS  Google Scholar 

  88. Jung C, Yabe JT, Shea TB. C-terminal phosphorylation of the high molecular weight neurofilament subunit correlates with decreased neurofilament axonal transport velocity. Brain Res 2000; 856(1–2):12–19.

    Article  PubMed  CAS  Google Scholar 

  89. Jung C, Shea TB. Regulation of neurofilament axonal transport by phosphorylation in optic axons in situ. Cell Motil Cytoskeleton 1999; 42(3):230–240.

    Article  PubMed  CAS  Google Scholar 

  90. Shea TB. Microtubule motors, phosphorylation and axonal transport of neurofilaments. J Neurocytol 2000; 29(11–12):873–887.

    Article  PubMed  CAS  Google Scholar 

  91. Ratner N, Bloom GS, Brady ST. A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: Effects defined by olomoucine and the APC tumor suppressor protein. J Neurosci 1998; 18(19):7717–7726.

    PubMed  CAS  Google Scholar 

  92. Strong MJ, Strong WL, Jaffe H et al. Phosphorylation state of the native high-molecular-weight neurofilament subunit protein from cervical spinal cord in sporadic amyotrophic lateral sclerosis. J Neurochem 2001; 76(5):1315–1325.

    Article  PubMed  CAS  Google Scholar 

  93. Julien JP, Couillard-Despres S, Meier J. Transgenic mice in the study of ALS: The role of neurofilaments. Brain Pathol 1998; 8(4):759–769.

    Article  PubMed  CAS  Google Scholar 

  94. Julien JP. Neurofilament functions in health and disease. Curr Opin Neurobiol 1999; 9(5):554–560.

    Article  PubMed  CAS  Google Scholar 

  95. Cote F, Collard JF, Julien JP. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: A mouse model of amyotrophic lateral sclerosis. Cell 1993; 73(1):35–46.

    Article  PubMed  CAS  Google Scholar 

  96. Eyer J, Peterson A. Neurofilament-deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-beta-galactosidase fusion protein. Neuron 1994; 12(2):389–405.

    Article  PubMed  CAS  Google Scholar 

  97. Marszalek JR, Williamson TL, Lee MK et al. Neurofilament subunit NF-H modulates axonal diameter by selectively slowing neurofilament transport. J Cell Biol 1996; 135(3):711–724.

    Article  PubMed  CAS  Google Scholar 

  98. Beaulieu JM, Jacomy H, Julien JP. Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit. J Neurosci 2000; 20(14):5321–5328.

    PubMed  CAS  Google Scholar 

  99. Lee MK, Cleveland DW. Neurofilament function and dysfunction: Involvement in axonal growth and neuronal disease. Curr Opin Cell Biol 1994; 6(1):34–40.

    Article  PubMed  CAS  Google Scholar 

  100. Houseweart MK, Cleveland DW. Cytoskeletal linkers: New MAPs for old destinations. Curr Biol 1999; 9(22):R864–866.

    Article  PubMed  CAS  Google Scholar 

  101. Vickers JC, Morrison JH, Friedrich Jr VL et al. Age-associated and cell-type-specific neurofibrillary pathology in transgenic mice expressing the human midsized neurofilament subunit. J Neurosci 1994; 14(9):5603–5612.

    PubMed  CAS  Google Scholar 

  102. Tu PH, Elder G, Lazzarini RA et al. Overexpression of the human NFM subunit in transgenic mice modifies the level of endogenous NFL and the phosphorylation state of NFH subunits. J Cell Biol 1995; 129(6):1629–1640.

    Article  PubMed  CAS  Google Scholar 

  103. Xu Z, Tung VW. Overexpression of neurofilament subunit M accelerates axonal transport of neurofilaments. Brain Res 2000; 866(1–2):326–332.

    Article  PubMed  CAS  Google Scholar 

  104. Elder GA, Friedrich Jr VL, Bosco P et al. Absence of the mid-sized neurofilament subunit decreases axonal calibers, levels of light neurofilament (NF-L), and neurofilament content. J Cell Biol 1998; 141(3):727–739.

    Article  PubMed  CAS  Google Scholar 

  105. Jacomy H, Zhu Q, Couillard-Despres S et al. Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J Neurochem 1999; 73(3):972–984.

    Article  PubMed  CAS  Google Scholar 

  106. Meier J, Couillard-Despres S, Jacomy H et al. Extra neurofilament NF-L subunits rescue motor neuron disease caused by overexpression of the human NF-H gene in mice. J Neuropathol Exp Neurol 1999; 58(10):1099–1110.

    Article  PubMed  CAS  Google Scholar 

  107. Strong MJ, Sopper MM, Crow JP et al. Nitration of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord. Biochem Biophys Res Commun 1998; 248(1):157–164.

    Article  PubMed  CAS  Google Scholar 

  108. Williamson TL, Cleveland DW. Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons. Nat Neurosci 1999; 2(1):50–56.

    Article  PubMed  CAS  Google Scholar 

  109. Traverse S, Gomez N, Paterson H et al. Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC 12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J 1992; 288 (Pt 2):351–355.

    PubMed  CAS  Google Scholar 

  110. Li BS, Zhang L, Gu J et al. Integrin alpha(1) beta(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Protail domain phosphorylation. J Neurosci 2000; 20(16):6055–6062.

    PubMed  CAS  Google Scholar 

  111. Veeranna, Shetty KT, Takahashi M et al. Cdk5 and MAPK are associated with complexes of cytoskeletal proteins in rat brain. Brain Res Mol Brain Res 2000; 76(2):229–236.

    Article  PubMed  CAS  Google Scholar 

  112. Quarles RH. Glycoproteins of myelin sheaths. J Mol Neurosci 1997; 8(1):1–12.

    PubMed  CAS  Google Scholar 

  113. Schachner M, Bartsch U. Multiple functions of the myelin-associated glycoprotein MAG (siglec-4a) in formation and maintenance of myelin. Glia 2000; 29(2):154–165.

    Article  PubMed  CAS  Google Scholar 

  114. Li C, Tropak MB, Gerlai R et al. Myelination in the absence of myelin-associated glycoprotein. Nature 1994; 369(6483):747–750.

    Article  PubMed  CAS  Google Scholar 

  115. Montag D, Giese KP, Bartsch U et al. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 1994; 13(1):229–246.

    Article  PubMed  CAS  Google Scholar 

  116. Bartsch S, Montag D, Schachner M et al. Increased number of unmyelinated axons in optic nerves of adult mice deficient in the myelin-associated glycoprotein (MAG). Brain Res 1997; 762(1–2):231–234.

    Article  PubMed  CAS  Google Scholar 

  117. Li C, Trapp B, Ludwin S et al. Myelin associated glycoprotein modulates glia-axon contact in vivo. J Neurosci Res 1998; 51(2):210–217.

    Article  PubMed  CAS  Google Scholar 

  118. Weiss MD, Hammer J, Quarles RH. Oligodendrocytes in aging mice lacking myelin-associated glycoprotein are dystrophic but not apoptotic. J Neurosci Res 2000; 62(6):772–780.

    Article  PubMed  CAS  Google Scholar 

  119. Yin X, Crawford TO, Griffin JW et al. Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci 1998; 18(6):1953–1962.

    PubMed  CAS  Google Scholar 

  120. Filbin MT. The Muddle with MAG. Mol Cell Neurosci 1996; 8(2/3):84–92.

    Article  PubMed  CAS  Google Scholar 

  121. Song H, Ming G, He Z et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 1998; 281(5382):1515–1518.

    Article  PubMed  CAS  Google Scholar 

  122. Cai D, Shen Y, De Bellard M et al. Prior exposure to neurotrophins blocks inhibition of axonal regeneration by MAG and myelin via a cAMP-dependent mechanism. Neuron 1999; 22(1):89–101.

    Article  PubMed  CAS  Google Scholar 

  123. Cai D, Qiu J, Cao Z et al. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci 2001; 21(13):4731–4739.

    PubMed  CAS  Google Scholar 

  124. Dashiell SM, Tanner SL, Pant HC et al. Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases. J Neurochem 2002; 81(6):1263–1272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Kesavapany, S., Quarles, R.H., Pant, H.C. (2006). Neurofilaments. In: Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/0-387-33781-4_4

Download citation

Publish with us

Policies and ethics