Skip to main content

Important Role of Shh Controlling Gli3 Functions during the Dorsal-Ventral Patterning of the Telencephalon

  • Chapter
Book cover Hedgehog-Gli Signaling in Human Disease

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 527 Accesses

Abstract

The dorsal-ventral patterning of the telencephalon is crucial for normal brain function because it determines the proportion of two different basic types of neurons: glutamatergic excitatory neurons and GABAergic inhibitory neurons. The secreted protein sonic hedgehog (Shh) is required for ventral cell specification, whereas the zinc finger transcription factor Gli3 seems to be important for dorsal cell type specification. Recent studies suggest how both Gli3 and Shh control the normal proportion of dorsal and ventral cell types to generate appropriate tissue size and shape. These observations may offer new insights into our understanding of the graded function of Shh during brain development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Riddle RD, Johnson RL, Laufer E et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75:1401–1416.

    Article  PubMed  CAS  Google Scholar 

  2. Krauss S, Concordet JP, Ingham PW. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 1993; 75:1431–1444.

    Article  PubMed  CAS  Google Scholar 

  3. Echelard Y, Epstein DJ, St-Jacques B et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993; 75:1417–1430.

    Article  PubMed  CAS  Google Scholar 

  4. Roelink H, Porter JA, Chiang C et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of Hedgehog expressed by the notochord. Cell 1994; 76:761–775.

    Article  PubMed  CAS  Google Scholar 

  5. Porter JA, Young KE, Beachy PA. Cholesterol modification of hedgehog signaling proteins in animal development. Science 1996; 274:255–259.

    Article  PubMed  CAS  Google Scholar 

  6. Oro AE, Higgins KM, Hu Z et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 1997; 276:817–821.

    Article  PubMed  CAS  Google Scholar 

  7. Fan H, Oro AE, Scott MP et al. Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog. Nature Med 1997; 3:788–792.

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y, Struhl G. Dual roles for patched in sequestering and transducing hedgehog. Cell 1996; 87:553–563.

    Article  PubMed  CAS  Google Scholar 

  9. Quirk J, van den Heuvel M, Henrique D et al. The smoothened gene and hedgehog signal transduction in Drosophila and vertebrate development. Cold Spring Harb Symp Quant Biol 1997; 62:217–226.

    PubMed  CAS  Google Scholar 

  10. Methot N, Basler K. An absolute requirement for Cubitus interruptus in Hedgehog signaling. Development 2001; 128:733–742.

    PubMed  CAS  Google Scholar 

  11. Aza-Blanc P, Ramirez-Weber F, Laget M et al. Proteolysis that is inhibited by hedgehog targets cubitus interruptus protein to the nucleus and converts it to repressor. Cell 1997; 89:1043–1053.

    Article  PubMed  CAS  Google Scholar 

  12. Lee J, Platt KA, Censullo P et al. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997; 124:2537–2552.

    PubMed  CAS  Google Scholar 

  13. Hynes M, Stone DM, Dowd M et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli1. Neuron 1997; 19:15–26.

    Article  PubMed  CAS  Google Scholar 

  14. Park HL, Bai C, Platt KA et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 2000; 127:1593–1605.

    PubMed  CAS  Google Scholar 

  15. Hashimoto-Torii K, Motoyama J, Hui CC et al. Differential activities of Sonic hedgehog mediated by Gli transcription factors define distinct neuronal subtypes in the dorsal thalamus. Mech Dev 2003; 120(10):1097–1111.

    Article  PubMed  CAS  Google Scholar 

  16. Ding Q, Motoyama J, Gasca S et al. Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice. Development 1998; 125:2533–2543.

    PubMed  CAS  Google Scholar 

  17. Matise MP, Epstein DJ, Park HL et al. Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system. Development 1998; 125:2759–2770.

    PubMed  CAS  Google Scholar 

  18. Aza-Blanc P, Lin H, Ruiz i Altaba A et al. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development 2000; 127:4293–4301.

    PubMed  Google Scholar 

  19. Wang B, Fallon JF, Beachy PA. Hedghog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 2000; 100(4):423–434.

    Article  PubMed  CAS  Google Scholar 

  20. Shimamura K, Rubenstein JL. Inductive interactions direct early regionalization of the mouse forebrain. Development 1997; 124(14):2709–2718.

    PubMed  CAS  Google Scholar 

  21. Storm EE, Rubenstein JL, Martin GR. Dosage of Fgf8 determines whether cell survival is positively or negatively regulated in the developing forebrain. Proc Natl Acad Sci USA 2003; 100(4):1757–1762.

    Article  PubMed  CAS  Google Scholar 

  22. Aoto K, Nishimura T, Eto K et al. Mouse GLI3 regulates FGF8 expression and apoptosis in the developing neural tube, face and limb bud. Dev Biol 2002; 251:320–332.

    Article  PubMed  CAS  Google Scholar 

  23. Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407–413.

    Article  PubMed  CAS  Google Scholar 

  24. Litingtung Y, Chiang C. Specification of ventral neuron types is mediated by an antagonistic interaction between Shh and Gli3. Nature Neurosci 2000; 3:979–985.

    Article  PubMed  CAS  Google Scholar 

  25. Rallu M, Machold R, Gariano N et al. Dorsal-ventral patterning is established in the telencephalon of mutants lacking both Gli3 and hedgehog signaling. Development 2002; 129:4963–4774.

    PubMed  CAS  Google Scholar 

  26. Theil T, Alvarez-Bolado G, Walter A et al. Gli3 is required for Emx gene expression during dorsal telencephalon development. Development 1999; 126:3561–3571.

    PubMed  CAS  Google Scholar 

  27. Tole S, Ragsdale CW, Grove EA. Dorsal-ventral patterning of the telencephalon is disrupted in the mouse mutant extra-toes (J). Dev Biol 2000; 217:254–265.

    Article  PubMed  CAS  Google Scholar 

  28. Johnson DR. Extra-toes: A new mutant gene causing multiple abnormalities in the mouse. J Embryol Exp Morph 1967; 17:543–581.

    PubMed  CAS  Google Scholar 

  29. Kuschel S, Ruther U, Theil T. A disrupted balance between Bmp/Wnt and Fgf signaling underlies the ventralization of the Gli3 mutant telencephalon. Dev Biol 2003; 260(2):484–495.

    Article  PubMed  CAS  Google Scholar 

  30. Crossley PH, Martinez S, Ohkubo Y et al. Coordinate expression of FGF8, Otx2, Bmp4, and Shh in the anterior prosencephalon during development of the telencephalic and optic vesicles. Neuroscience 2001; 108:183–206.

    Article  PubMed  CAS  Google Scholar 

  31. Furuta Y, Piston DW, Hogan BL. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 1994; 124:2203–2212.

    Google Scholar 

  32. Theil T, Aydin S, Kosh S et al. Wnt and Bmp signaling cooperatively regulate graded Emx2 expression in the dorsal telencephalon. Development 2002; 129(13):3045–3054.

    PubMed  CAS  Google Scholar 

  33. Panchision DM, Pickel JM, Studer L et al. Sequential action of BMP receptor control neural precursor cell production and fate. Genes Dev 2001; 15:2094–2110.

    Article  PubMed  CAS  Google Scholar 

  34. Persson M, Stamataki D, te Welscher P et al. Dorsal-ventral patterning of the spinal cord requires Gli3 transcriptional repressor activity. Genes Dev 2002; 16(22):2865–2878.

    Article  PubMed  CAS  Google Scholar 

  35. Meyer NP, Roelink H. The amino-terminal region of Gli3 antagonizes the Shh response and acts in dorsal-ventral fate specification in the developing spinal cord. Dev Biol 2003; 257(2):343–355.

    Article  PubMed  CAS  Google Scholar 

  36. Bose J, Grotewold L, Ruther U. Pallister-hall syndrome phenotype in mice mutant for Gli3. Hum Mol Genet 2002; 11:1129–1135.

    Article  PubMed  CAS  Google Scholar 

  37. Gulacsi A, Lillien L. Sonic Hedgehog and bone morphogenetic protein regulate interneuron development from dorsal telencephalic progenitors in vitro. J Neurosci 2003; 23(30):9862–9872.

    PubMed  CAS  Google Scholar 

  38. Anderson RM, Lawrence AR, Stottman RW et al. Chordin and noggin promote organizing centers of forebrain development in the mouse. Development 2002; 129:4975–4987.

    PubMed  CAS  Google Scholar 

  39. Houart C, Caneparo L, Heisenberg CP et al. Establishment of the telencephalon during gastrulation by local antagonism of Wnt signaling. Neuron 2002; 35:255–265.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Motoyama, J., Aoto, K. (2006). Important Role of Shh Controlling Gli3 Functions during the Dorsal-Ventral Patterning of the Telencephalon. In: Hedgehog-Gli Signaling in Human Disease. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33777-6_14

Download citation

Publish with us

Policies and ethics