Skip to main content

Fanconi Anaemia and Oxidative Stress

Cellular and Clinical Phenotypes

  • Chapter
  • 514 Accesses

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

The cellular and clinical phenotypes of Fanconi Anaemia (FA) have been associated with a set of redox abnormalities using evidence arising from in vitro, in vivo and molecular studies. The available information points to: (i) the influence of oxygen and antioxidants in chromosomal instability and in apoptosis; (ii) the redox-related toxicity mechanisms of agents (commonly termed “crosslinkers”) triggering excess sensitivity of FA cells; (iii) a set of abnormalities in redox biomarkers detected in body fluids and blood cells from FA patients; (iv) a number of clinical features related to a chronic pro-oxidant state, and (v) the involvement of redox pathways in the functions and structures of at least three proteins encoded by FA genes (FANCA, FANCC and FANCG). Oxidative stress may thus be envisaged as an important phenomenon in FA accounting for most of the findings observed in FA’s clinical phenotype. This information ought to prompt clinical studies that might unveil new avenues in FA research, such as the prospect of controlled chemoprevention trials aimed at counteracting the FA-associated pro-oxidant state and ameliorating FA’s clinical course.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alter BP. Fanconi anemia and malignancies. Am J Hematol 1996; 53:99–110.

    Article  PubMed  CAS  Google Scholar 

  2. Alter BP. Fanconi anaemia and its variability. Brit J Haematol 1993; 85:9–14.

    CAS  Google Scholar 

  3. Auerbach AD, Wolman SR. Susceptibility of Fanconi anaemia fibroblasts to chromosome damage by carcinogens. Nature 1976; 261:494–496.

    Article  PubMed  CAS  Google Scholar 

  4. Ishida R, Buchwald M. Susceptibility of Fanconi anemia lymphoblasts to DNA cross-linking and alkylating agents. Cancer Res 1982; 42:4000–4006.

    PubMed  CAS  Google Scholar 

  5. Moustacchi E, Diatloff-Zito C. DNA semiconservative synthesis in normal and Fanconi anemia fibroblasts following treatment with 8-methoxypsoralen and near ultraviolet light or with x-rays. Hum Genet 1985; 70:236–242.

    Article  PubMed  CAS  Google Scholar 

  6. Poll EH, Arwert F, Joenje H et al. Cytogenetic toxicity of anti-tumor platinum compounds in Fanconi’s anemia. Hum Genet 1982; 61:228–230.

    Article  PubMed  CAS  Google Scholar 

  7. Taniguchi T, D’Andrea AD. Molecular pathogenesis of Fanconi anemia. Int J Hematol 2002; 75:123–128.

    PubMed  CAS  Google Scholar 

  8. Vilcheck SK, O’Brien TJ, Pritchard DE et al. Fanconi anemia complementation group A cells are hyper-sensitive to chromium (IV) induced toxicity. Environ Health Perspect 2002; 110(Suppl 5):773–777.

    PubMed  CAS  Google Scholar 

  9. Wang X, D’Andrea AD. The interplay of Fanconi anemia proteins in the DNA damage response. DNA Repair (Amst) 2004; 3:1063–1069.

    Article  PubMed  CAS  Google Scholar 

  10. Korkina LG, Samochatova EV, Maschan AA et al. Release of active oxygen radicals by leukocytes of Fanconi’s anemia patients. J Leukocyte Biol 1992; 52:357–62.

    PubMed  CAS  Google Scholar 

  11. Pagano G, Degan P, d’Ischia M et al. Oxidative stress as a multiple effector in Fanconi anaemia clinical phenotype. Eur J Haematol 2005; 75:93–100.

    Article  PubMed  CAS  Google Scholar 

  12. Pagano G, Youssoufian H. Fanconi’s anaemia proteins: Concurrent roles in cell protection against oxidative damage. BioEssays 2003; 25:589–595.

    Article  PubMed  CAS  Google Scholar 

  13. Wajnrajch MP, Gertner JM, Huma Z et al. Evaluation of growth and hormonal status in patients referred to the International Fanconi Anemia Registry. Paediatrics 2001; 107:744–754.

    Article  CAS  Google Scholar 

  14. Gille JJ, Wortelboer HM, Joenje H. Antioxidant status of Fanconi anemia fibroblasts. Hum Genet 1987; 77:28–31.

    Article  PubMed  CAS  Google Scholar 

  15. Nordenson I. Effect of superoxide dismutase and catalase on spontaneously occuring chromosome breaks in patients with Fanconi’s anemia. Hereditas 1977; 86:147–150.

    Article  PubMed  CAS  Google Scholar 

  16. Bogliolo M, Cabre O, Callen E et al. The Fanconi anemia genome stability and tumour suppressor network. Mutagenesis 2002; 17:529–538.

    Article  PubMed  CAS  Google Scholar 

  17. Ostrakhovitch EA, Afanas’ev IB. Oxidative stress in rheumatoid arthritis leukocytes: Suppression by rutin and other antioxidants and chelators. Biochem Pharmacol 2001; 62:743–746.

    Article  PubMed  CAS  Google Scholar 

  18. Cumming RC, Lightfoot J, Beard K et al. Fanconi anemia group C protein prevents apoptosis in hematopoietic cells through redox regulation of GSTP1. Nature Med 2001; 7:814–20.

    Article  PubMed  CAS  Google Scholar 

  19. Futaki M, Igarashi T, Watanabe S et al. The FANCG Fanconi anemia protein interacts with CYP2E1: Possible role in protection against oxidative DNA damage. Carcinogenesis 2002; 23:67–72.

    Article  PubMed  CAS  Google Scholar 

  20. Kruyt FA, Hoshino T, Liu JM et al. Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase. Blood 1998; 92:3050–3056.

    PubMed  CAS  Google Scholar 

  21. Dusre L, Rajagopalan S, Eliot HM et al. DNA interstrand cross-link and free radical formation in a human multidrug resistant cell line from mitomycin C and its analogues. Cancer Res 1990; 50:648–652.

    PubMed  CAS  Google Scholar 

  22. Gutteridge JMC, Quinlan GJ, Wilkins S. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals. FEBS Lett 1984; 167:37–41.

    Article  PubMed  CAS  Google Scholar 

  23. Penketh PG, Hodnick WF, Belcourt MF et al. Inhibition of DNA crosslinking by mitomycin C by peroxidase-mediated oxidation of mitomycin C hydroquinone. J Biol Chem 2001; 276:34445–34452.

    Article  PubMed  CAS  Google Scholar 

  24. Bartók M, Láng KL, Oxiranes. In: Patai S, ed. The chemistry of functional groups. Supplement E, Part 2, The chemistry of ether, Crown ethers, Hydroxyl groups and their sulphur analogues. Chichester: John Wiley Inc., 1980:609–673.

    Google Scholar 

  25. Degan P, Bonassi S, De Caterina M et al. In vivo accumulation of 8-hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi’s anaemia families. Carcinogenesis 1995; 16:735–742.

    Article  PubMed  CAS  Google Scholar 

  26. Pagano G, Degan P, d’lschia M et al. Gender-and age-related distinctions for the in vivo prooxidant state in Fanconi anaemia patients. Carcinogenesis 2004; 25:1899–1909.

    Article  PubMed  CAS  Google Scholar 

  27. Dufour C, Corcione A, Svahn J et al. TNF-α and IFN-γ are over expressed in the bone marrow of Fanconi anemia patients and TNF-α suppresses erythropoiesis in vitro. Blood 2003; 102:2053–2059.

    Article  PubMed  CAS  Google Scholar 

  28. Joenje H, Oostra AB. Clastogenicity of cyclophosphamide in Fanconi anemia lymphocytes without exogenous metabolic activation. Can Genet Cytogen 1986; 22:339–345.

    Article  CAS  Google Scholar 

  29. Joenje H, Arwert F, Eriksson AW et al. Oxygen-dependence of chromosomal aberrations in Fanconi’s anaemia. Nature 1981; 290:142–143.

    Article  PubMed  CAS  Google Scholar 

  30. Raj AD, Heddle JA. The Effect of superoxide dismutase catalase, L cysteine on spontaneous and mitomycin C induced chromosomal breakage in Fanconi anemia and normal fibroblasts as measured by the micronucleus method. Mutat Res 1980; 78:59–66.

    Article  PubMed  CAS  Google Scholar 

  31. Reuter TY, Medhurst AL, Waisfisz Q et al. Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport. Exp Cell Res 2003; 289:211–221.

    Article  PubMed  CAS  Google Scholar 

  32. Takeuchi T, Morimoto K. Increased formation of 8-hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi’s anemia patients due to possible catalase deficiency. Carcinogenesis 1993; 14:1115–1120.

    Article  PubMed  CAS  Google Scholar 

  33. Zanier R, Briot D, Villard JA et al. Fanconi anemia C gene product regulates expression of genes involved in differentiation and inflammation. Oncogene 2004; 23:5004–5013.

    Article  PubMed  CAS  Google Scholar 

  34. Iyer VN, Szybalski W. Mitomycins and porphyromycin: Chemical mechanism of activation and cross-linking of DNA. Science 1964; 145:55–58.

    Article  PubMed  CAS  Google Scholar 

  35. Poot M, Gross O, Epe B et al. Cell cycle defect in connection with oxygen and iron sensitivity in Fanconi anemia lymphoblastoid cells. Exp Cell Res 1996; 222:262–268.

    Article  PubMed  CAS  Google Scholar 

  36. Bligh HFJ, Bartoszek A, Robson CN et al. Activation of mitomycin C by NADPH: Cytochrome P450 reductase. Cancer Res 1990; 50:7789–7792.

    PubMed  CAS  Google Scholar 

  37. Pritsos CA, Sartorelli AC. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotic. Cancer Res 1986; 46:3528–3532.

    PubMed  CAS  Google Scholar 

  38. Clarke AA, Philpott NJ, Gordon-Smith EC et al. The sensitivity of Fanconi anemia group C cells to apoptosis induced by mitomycin C is due to oxygen radical generation, not DNA crosslinking. Br J Haematol 1997; 96:240–247.

    Article  PubMed  CAS  Google Scholar 

  39. Korkina LG, Deeva IB, Iaccarino M et al. Redox dependent toxicity in diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis 2000; 21:213–220.

    Article  PubMed  CAS  Google Scholar 

  40. Ruppitsch W, Meisslitzer C, Hirsch-Kauffmann M et al. Overexpression of thioredoxin in Fanconi anemia fibroblasts prevents the cytotoxic and DNA damaging effect of mitomycin C and diepoxybutane. FEBS Lett 1998; 422:99–102.

    Article  PubMed  CAS  Google Scholar 

  41. Spanò M, Cordelli E, Leter G et al. Diepoxybutane cytotoxicity of mouse germ cells is enhanced by in vivo glutathione depletion. A flow cytometric approach. Mutat Res 1998; 397:37–43.

    PubMed  Google Scholar 

  42. Vlachodimitropoulos D, Norppa H, Autio K et al. GSTT1-dependent induction of centromere-negative and-positive micronuclei by l,2:3,4-diepoxybutane in cultured human lymphocytes. Mutagenesis 1997; 12:397–403.

    Article  PubMed  CAS  Google Scholar 

  43. Madle S. Evaluation of experimental parameters in an S9/human leukocyte SCE test with cyclophosphamide. Muatt Res 1981; 85:347–356.

    CAS  Google Scholar 

  44. Ghosh D, Das UB, Misra M. Protective role of alpha tocopherol-succinate (provitamin E) in cyclophosphamide induced testicular gametogenic and steroidogenic disorders: A correlative approach to oxidative stress. Free Radic Res 2002; 36:1209–1218.

    Article  PubMed  CAS  Google Scholar 

  45. De Martinis BS, Bianchi MD. Effect of vitamin C supplementation against cis-platin induced toxicity and oxidative DNA damage in rats. Pharmacol Res 2001; 44:317–320.

    Article  PubMed  CAS  Google Scholar 

  46. Schaaf GJ, Maas RF, de Groene EM et al. Management of oxidative stress by heme oxygenase-1 in cis-platin induced toxicity in renal tubular cells. Free Radic Res 2002; 36:835–843.

    Article  PubMed  CAS  Google Scholar 

  47. Goodbout JP, Pesavento J, Hartman ME et al. Methylglyoxal enhances cis-platin induced cytotoxicity by activating protein kinase C delta. J Biol Chem 2002; 277:2554–2561.

    Article  CAS  Google Scholar 

  48. Waisfisz Q, Miyazato A, de Winter J et al. Analysis of baseline and cisplatin-inducible gene expression in Fanconi anemia cells using oligonucleotide-basedmicroarrays. BMC Blood Disorders 2002; 2:5.

    Article  PubMed  Google Scholar 

  49. Esposito F, Cuccovillo F, Russo L et al. A new p21waf1/cip1 isoform is an early event of cell response to oxidative stress. Cell Death Differ 1998; 5:940–945.

    Article  PubMed  CAS  Google Scholar 

  50. Zdzienicka MZ, Arwert F, Neuteboom I et al. The Chinese hamster V79 cell mutant V-h4 is phenotypically like Fanconi anemia cells. Somat Cell Mol Genet 1990; 16:575–581.

    Article  PubMed  CAS  Google Scholar 

  51. Decuyper J, Piette J, Van de Vorst A. Activated oxygen species produced by photoexcited furocoumarin derivatives. Arch Int Physiol Biochim 1983; 91:471–476.

    PubMed  CAS  Google Scholar 

  52. Liu Z, Lu Y, Lebwohl M et al. PUVA (8-methoxypsoralen plus ultraviolet A) induces the formation of 8-hydroxy-2′-deoxyguanosine and DNA fragmentation in calf thymus DNA and human epidermoid carcinoma cells. Free Radic Biol Med 1999; 27:127–133.

    Article  PubMed  CAS  Google Scholar 

  53. d’Ischia M, Napolitano A, Prota G. Psoralen sensitise glutathione photooxidation in vitro. Biochim Biophys Acta 1989; 993:143–147.

    PubMed  CAS  Google Scholar 

  54. Rousset S, Nocentini S, Rouillard D et al. Mitochondrial alterations in Fanconi anemia fibroblasts following ultraviolet A or psoralen photoactivation. Photochem Photobiol 2002; 75:159–166.

    Article  PubMed  CAS  Google Scholar 

  55. O’Brien T, Xu J, Patierno SR. Effects of glutathione on chromium induced DNA crosslinking and DNA polymerase arrest. Mol Cell Biochem 2001; 222:173–182.

    Article  PubMed  CAS  Google Scholar 

  56. Quievryn G, Goulart M, Messer J et al. Reduction of Cr (VI) by cysteine: Significance in human lymphocytes and formation of DNA damage in reaction with variable reduction rates. Mol Cell Biochem 2001; 222:107–118.

    Article  PubMed  CAS  Google Scholar 

  57. Izzotti A, Bagnasco M, Camoirano A et al. DNA fragmentation, DNA protein crosslinks, postlabeled nucleotide modifications and 8-hydroxy-2′-deoxyguanosine in the lung but not in liver of rats receiving intratracheal instillation of chromium (VI). Chemoprevention by oral N-acetlcysteine. Mutat Res 1998; 400:233–244.

    PubMed  CAS  Google Scholar 

  58. Nguyen-nhu NT, Knoops B. Alkyl hydroperoxide 1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicol Lett 2002; 135:219–228.

    Article  PubMed  CAS  Google Scholar 

  59. Bagchi D, Bagchi M, Stohs SJ. Chromium (VI) induced oxidative stress, apoptotic cell death and modulation of p53 tumour suppressor gene. Mol Cell Biochem 2001; 222:149–158.

    Article  PubMed  CAS  Google Scholar 

  60. Tsou TC, Chen CL, Liu TY et al. Induction of 8-hydroxyguanosine in DNA by chromium (III) plus hydrogen peroxide and its prevention by scavengers. Carcinogenesis 1996; 17:103–108.

    Article  PubMed  CAS  Google Scholar 

  61. Park SJ, Ciccone SL, Beck BD et al. Oxidative stress/damage induces multimerization and interaction of Fanconi anemia proteins. J Biol Chem 2004; 279:30053–30059.

    Article  PubMed  CAS  Google Scholar 

  62. Morrell D, Chase CL, Kupper LL et al. Diabetes mellitus in ataxia-telangiectasia, Fanconi anemia, xeroderma pigmentosum, common variable immune deficiency, and severe combined immune deficiency families. Diabetes 1986; 35:143–147.

    PubMed  CAS  Google Scholar 

  63. Dallapiccola B, Porfirio B, Mokini V et al. Effect of oxidants and anti-oxidants on chromosomal breakage in Fanconi anemia lymphocytes. Hum Genet 1985; 69:62–65.

    Article  PubMed  CAS  Google Scholar 

  64. Nagasawa H, Little JB. Suppression of cytotoxic effect of mitomycin-C by superoxide dismutase in Fanconi’s anemia and dyskeratosis congenita fibroblasts. Carcinogenesis 1983; 4:795–798.

    Article  PubMed  CAS  Google Scholar 

  65. Saadatzadeh MR, Bijangi-Vishehsaraei K, Hong P et al. Oxidant hypersensitivity of Fanconi anemia type C deficient cells is dependent on a redox-regulated apoptotic pathway. J Biol Chem 2004; 279:16805–16812.

    Article  PubMed  CAS  Google Scholar 

  66. Emerit I, Levy A, Pagano G et al. Transferable clastogenic activity in plasma from patients with FA. Hum Genet 1995; 96:14–20.

    Article  PubMed  CAS  Google Scholar 

  67. Schulz JC, Shahidi NT. Tumor necrosis factor-α overproduction in Fanconi’s anemia. Am J Hematol 1993; 42:196–201.

    Article  Google Scholar 

  68. Pearl-Yafe M, Halperin D, Halevy A et al. An oxidative mechanism of interferon induced priming of the Fas pathway in Fanconi anemia cells. Biochem Pharmacol 2003; 65:833–842.

    Article  PubMed  CAS  Google Scholar 

  69. Kontou M, Adelfalk C, Ramirez MH et al. Overexpressed thioredoxin compensates Fanconi anemia related chromosomal instability. Oncogene 2002; 21:2406–2412.

    Article  PubMed  CAS  Google Scholar 

  70. Umegaki K, Sugisawa A, Shin SJ et al. Different onsets of oxidative damage to DNA and lipids in bone marrow and liver in rats given total body irradiation. Free Radic Biol Med 2001; 31:1066–1074.

    Article  PubMed  CAS  Google Scholar 

  71. Smith MT. Overview of benzene-induced aplastic anaemia. Eur J Haematol Suppl 1996; 60:107–110.

    PubMed  CAS  Google Scholar 

  72. Memoli S, Napolitano A, d’Ischia M et al. Diffusible melanin-related metabolites are potent inhibitors of lipid peroxidation. Biochim Biophys Acta 1997; 1346:61–68.

    PubMed  Google Scholar 

  73. Prota G. Melanins and Melanogenesis. New York: Academic Press, 1992.

    Google Scholar 

  74. Schallreuter KU, Lemke KR, Hill HZ et al. Thioredoxin reductase induction coincides with melanin biosynthesis in brown and black guinea pigs and in murine melanoma cells. J Invest Dermatol 1994; 103:820–824.

    Article  PubMed  CAS  Google Scholar 

  75. Schallreuter KU, Wood JM. Free radical reduction in the human epidermis. Free Radic Biol Med 1989; 6:519–532.

    Article  PubMed  CAS  Google Scholar 

  76. Wells PG, Kim PM, Laposa RR et al. Oxidative damage in chemical teratogenesis. Mutat Res 1997; 396:65–78.

    PubMed  CAS  Google Scholar 

  77. Hansen JM, Harris KK, Philbert MA et al. Thalidomide modulates nuclear redox status and preferentially depletes glutathione in rabbit limb versus rat limb. J Pharmacol Exp Ther 2002; 300:768–776.

    Article  PubMed  CAS  Google Scholar 

  78. Blasiak J, Sikora A, Wozniak K et al. Genotoxicity of streptozotocin in normal and cancer cells and its modulation by free radical scavengers. Cell Biol Toxicol 2004; 20:83–96.

    Article  PubMed  CAS  Google Scholar 

  79. Tyrberg B, Anachkov KA, Dib SA et al. Islet expression of the DNA repair enzyme 8-oxoguanosine DNA glycosylase (Ogg1) in human type 2 diabetes. BMC Endocr Disord 2002; 2:2.

    Article  PubMed  Google Scholar 

  80. Ling G, Chadwick CA, Berne B et al. Epidermal p53 response and repair of thymine dimers in human skin after a single dose of ultraviolet radiation: Effects of photoprotection. Acta Derm Venereol 2001; 81:81–86.

    Article  PubMed  CAS  Google Scholar 

  81. Sheehan JM, Cragg N, Chadwick CA et al. Repeated ultraviolet exposure affords the same protection against DNA photodamage and erythema in human skin types II and IV but is associated with faster DNA repair in skin type IV. J Invest Dermatol 2002; 118:825–829.

    Article  PubMed  CAS  Google Scholar 

  82. Le Page F, Randrianarison V, Marot D et al. BRCA1 and BRCA2 are necessary for the transcription-coupled repair of the oxidative 8-oxoguanine lesion in human cells. Cancer Res 2000; 60:5548–5552.

    PubMed  Google Scholar 

  83. Pichierri P, Rosselli F. The DNA crosslink-induced S-phase checkpoint depends on ATR-CHK1 and ATR-NBS1-FANCD2 pathways. EMBO J 2004; 23:1178–1187.

    Article  PubMed  CAS  Google Scholar 

  84. Howlett NG, Taniguchi T, Olson S et al. Biallelic inactivation of BRCA2 in Fanconi anemia. Science 2002; 297:606–609.

    Article  PubMed  CAS  Google Scholar 

  85. Das KC, Dashnamoorthy R. Hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites. Am J Physiol Lung Cell Mol Physiol 2004; 286:L87–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Pagano, G., Ahmad, S.I. (2006). Fanconi Anaemia and Oxidative Stress. In: Molecular Mechanisms of Fanconi Anemia. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33776-8_9

Download citation

Publish with us

Policies and ethics