Skip to main content

Pro-Invasive Molecular Cross-Signaling between Cancer Cells and Myofibroblasts

  • Chapter
  • 547 Accesses

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

Cancer cell invasion necessitates the participation of host cells. One of the cell types that stimulates invasion of colon and other cancer cells is the myofibroblast, as evidenced from the histology of cancer and from coculture experiments. Cancer cells produce transforming growth factor-β (TGF-β) and TGF-β converts fibroblasts into pro-invasive myofibroblasts. In the in vitro system with human cancer cell lines and freshly isolated stromal cells, the pro-invasive activity of myofibroblasts is due to the combined action of Hepatocyte growth factor/scatter factor (HGF/SF) and tenascin-C, two molecules known to promote invasion in clinical tumors and their experimental surrogates. The myofibroblasts are themselves invasive and this activity is stimulated by TGF-β. N-cadherin is implicated in the invasion response of myofibroblasts. The question now is which of the multiple factors present in the tumor ecosystem is responsible for the pro-invasive switch that turns a benign tumor into a malignant one.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mueller MM, Fusenig NE. Friends or foes-bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 2004; 4:839–849.

    Article  PubMed  CAS  Google Scholar 

  2. Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407:249–257.

    Article  PubMed  CAS  Google Scholar 

  3. Opdenakker G, Van Damme J. The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. Int J Dev Biol 2004; 48:519–527.

    Article  PubMed  CAS  Google Scholar 

  4. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003; 200:429–447.

    Article  PubMed  CAS  Google Scholar 

  5. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 1:571–573.

    Article  Google Scholar 

  6. Allinen M, Beroukhim R, Cai L et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004; 6:17–32.

    Article  PubMed  CAS  Google Scholar 

  7. Howe JR, Roth S, Ringold JC et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 1998; 280:1086–1088.

    Article  PubMed  CAS  Google Scholar 

  8. Bardeesy N, Sinha M, Hezel AF. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 2002; 419:162–167.

    Article  PubMed  CAS  Google Scholar 

  9. Young J, Biden KG, Simms LA et al. HPP1: a transmembrane protein-encoding gene commonly methylated in colorectal polyps and cancers. Proc Natl Acad Sci USA 2001; 98:265–270.

    Article  PubMed  CAS  Google Scholar 

  10. Kinzler KW, Vogelstein B. Landscaping the cancer terrain. Science 1998; 280:1036–1037.

    Article  PubMed  CAS  Google Scholar 

  11. Majno G, Gabbiani G, Hirschel BJ et al. Contraction of granulation tissue in vitro: similarity to smooth muscle. Science 1971; 173:548–550.

    Article  PubMed  CAS  Google Scholar 

  12. Desmoulière A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int J Dev Biol 2004; 48:509–517.

    Article  PubMed  Google Scholar 

  13. Dimanche-Boitrel MT, Vakaet Jr L, Pujuguet P et al. In vivo and in vitro invasiveness of a rat colon cancer cell line maintaining E-cadherin expression. An enhancing role of tumor-associated myofibroblasts. Int J Cancer 1994; 56:512–521.

    Article  PubMed  CAS  Google Scholar 

  14. De Wever O, Nguyen Q-D, Van Hoorde L et al. Tenascin-C and SF/HGF produced by myofibroblasts in vitro provide convergent pro-invasive signals to human colon cancer cells through RhoA and Rac. FASEB J 2004; 18:1016–1018.

    PubMed  Google Scholar 

  15. Seemayer TA, Lagace R, Schurch W et al. Myofibroblasts in the stroma of invasive and metastatic carcinoma: a possible host response to neoplasia. Am J Surg Pathol 1979; 3:525–533.

    Article  PubMed  CAS  Google Scholar 

  16. Cintorino M, Bellizzi de Marco E, Leoncini P et al. Expression of a-smooth-muscle actin in stromal cells of the uterine cervix during epithelial neoplastic changes. Int J Cancer 1991; 47:843–846.

    Article  PubMed  CAS  Google Scholar 

  17. Barth PJ, Ebrahimsade S, Ramaswamy A et al. CD34+ fibrocytes in invasive ductal carcinoma, ductal carcinoma in situ, and benign breast lesions. Virchows Arch 2002; 440:298–303.

    Article  PubMed  CAS  Google Scholar 

  18. Sappino A-P, Dietrich P-Y, Skalli O et al. Colonic pericryptal fibroblasts. Differentiation pattern in embryogenesis and phenotypic modulation in epithelial proliferative lesions. Virchows Arch A Pathol Anat 1989; 415:551–557.

    Article  CAS  Google Scholar 

  19. Dingemans KP, Zeeman-Boeschoten IM, Keep RF et al. Transplantation of colon carcinoma into granulation tissue induces an invasive morphotype. Int J Cancer 1993; 54:1010–1016.

    Article  PubMed  CAS  Google Scholar 

  20. Van Hoorde L, Pocard M, Maryns I et al. Induction of invasion in vivo of a-catenin-positive HCT-8 human colon-cancer cells. Int J Cancer 2000; 88:751–758.

    Article  PubMed  Google Scholar 

  21. Rønnov-Jessen L, Van Deurs B, Nielsen M et al. Identification, paracrine generation, and possible function of human breast carcinoma myofibroblasts in culture. In Vitro Cell Dev Biol 1992; 28A:273–283.

    PubMed  Google Scholar 

  22. Rønnov-Jessen L, Petersen OW, Koteliansky VE et al. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995; 95:859–873.

    PubMed  Google Scholar 

  23. Halttunen T, Marttinen A, Rantala I et al. Fibroblasts and transforming growth factor-ß induce organization and differentiation of T84 human epithelial cells. Gastroenterology 1996; 111:1252–1262.

    Article  PubMed  CAS  Google Scholar 

  24. Kunz-Schughart LA, Heyder P, Schroeder J et al. A heterologous 3-D coculture model of breast tumor cells and fibroblasts to study tumor-associated fibroblast differentiation. Exp Cell Res 2001; 266:74–86.

    Article  PubMed  CAS  Google Scholar 

  25. Silzle T, Kreutz M, Dobler MA et al. Tumor-associated fibroblasts recruit blood monocytes into tumor tissue. Eur J Immunol 2003; 33:1311–1320.

    Article  PubMed  CAS  Google Scholar 

  26. Silzle T, Randolph GJ, Kreutz M et al. The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer 2004; 108:173–180.

    Article  PubMed  CAS  Google Scholar 

  27. Rønnov-Jessen L, Petersen OW. Induction of a-smooth muscle actin by transforming growth factor-ß1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 1993; 68:696–707.

    PubMed  Google Scholar 

  28. Desmoulière A, Geinoz A, Gabbiani F et al. Transforming growth factor-ß1 induces a-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993; 122:103–111.

    Article  PubMed  Google Scholar 

  29. Kunz-Schughart LA, Wenninger S, Neumeier T et al. Three-dimensional tissue structure affects sensitivity of fibroblasts to TGF-β1. Am J Physiol Cell Physiol 2003; 284:C209–C219.

    PubMed  CAS  Google Scholar 

  30. Bucala R, Spiegel LA, Chesney J et al. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med 1994; 1:71–81.

    PubMed  CAS  Google Scholar 

  31. Barth PJ, Ebrahimsade S, Hellinger A et al. CD34+ fibrocytes in neoplastic and inflammatory pancreatic lesions. Virchows Arch 2002; 440:128–133.

    Article  PubMed  CAS  Google Scholar 

  32. Ramaswamy A, Moll R, Barth PJ. CD34+ fibrocytes in tubular carcinomas and radial scars of the breast. Virchows Arch 2003; 443:536–540.

    Article  PubMed  Google Scholar 

  33. Barth PJ, Schenck zu Schweinsberg T, Ramaswamy A et al. CD34+ fibrocytes, a-smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of invasive squamous cellcarcinomas of the oral cavity, pharynx, and larynx. Virchows Arch 2004; 444:231–234.

    Article  PubMed  CAS  Google Scholar 

  34. Ishii G, Sangai T, Oda T et al. Bone-marrow-derived myofibroblasts contribute to the cancer-in duced stromal reaction. Biochem Biophys Res Commun 2003; 309:232–2435.

    Article  PubMed  CAS  Google Scholar 

  35. Petersen OW, Nielsen HL, Gudjonsson T et al. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 2003; 162:391–402.

    PubMed  CAS  Google Scholar 

  36. Brown KA, Aakre ME, Gorska AE et al. Induction by transforming growth factor-ß1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 2004; 6:R215–R231.

    Article  PubMed  CAS  Google Scholar 

  37. Oft M, Peli J, Rudaz C et al. TGF-β1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev 1996; 10:2462–2477.

    PubMed  CAS  Google Scholar 

  38. Oft M, Akhurst RJ, Balmain A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat Cell Biol 2002; 4:487–494.

    Article  PubMed  CAS  Google Scholar 

  39. Trusolino L, Comoglio PM. Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer 2002; 2:289–300.

    Article  PubMed  CAS  Google Scholar 

  40. Gohda E, Tsubouchi H, Nakayama H et al. Purification and partial characterization of hepatocyte growth factor from plasma of a patient with fulminant hepatic failure. J Clin Invest 1988; 81:414–419.

    PubMed  CAS  Google Scholar 

  41. Gherardi E, Gray J, Stoker M et al. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci USA 1989; 86:5844–5848.

    Article  PubMed  CAS  Google Scholar 

  42. Weidner KM, Arakaki N, Hartmann G et al. Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 1991; 88:7001–7005.

    Article  PubMed  CAS  Google Scholar 

  43. Oliveira MJ, Mareel M, Leroy A. Cancer invasion and metastasis: cellular, molecular and clinical aspects. Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine 2004 (In Press).

    Google Scholar 

  44. Sonnenberg E, Meyer D, Weidner KM et al. Scatter factor/hepatocyte growth factor and its recap tor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 1993; 123:223–235.

    Article  PubMed  CAS  Google Scholar 

  45. Fukuura T, Miki C, Inoue T et al. Serum hepatocyte growth factor as an index of disease status of patients with colorectal carcinoma. Br J Cancer 1998; 78:454–459.

    PubMed  CAS  Google Scholar 

  46. Tanaka K, Miki C, Wakuda R et al. Circulating level of hepatocyte growth factor as a useful tumor marker in patients with early-stage gastric carcinoma. Scand J Gastroenterol 2004; 39:754–760.

    Article  PubMed  CAS  Google Scholar 

  47. Chen Y-S, Wang J-T, Chang Y-F et al. Expression of hepatocyte growth factor and c-met protein is significantly associated with the progression of oral squamous cell carcinoma in Taiwan. J Oral Pathol Med 2004; 33:209–217.

    Article  PubMed  CAS  Google Scholar 

  48. Tsukinoki K, Yasuda M, Mori Y et al. Hepatocyte growth factor and c-Met immunoreactivity are associated with metastasis in high grade salivary gland carcinoma. Oncol Rep 2004; 12:1017–1021.

    PubMed  CAS  Google Scholar 

  49. Martel C, Harper F, Cereghini S et al. Inactivation of retinoblastoma family proteins by SV40 T antigen results in creation of a hepatocyte growth factor/scatter factor autocrine loop associated with an epithelial-fibroblastoid conversion and invasiveness. Cell Growth Differ 1997; 8:165–178.

    PubMed  CAS  Google Scholar 

  50. Zhang KX, Ward KR, Schrader JW. Multiple aspects of the phenotype of mammary epithelial cells transformed by expression of activated M-Ras depend on an autocrine mechanism mediated by hepatocyte growth factor/scatter factor. Mol Cancer Res 2004; 2:242–255.

    PubMed  CAS  Google Scholar 

  51. Su W, Gutmann DH, Perry A et al. CD44-independent hepatocyte growth factor/c-Met autocrine loop promotes malignant peripheral nerve sheath tumor cell invasion in vitro. Glia 2004; 45:297–306.

    Article  PubMed  Google Scholar 

  52. Neaud V, Faouzi S, Guirouilh J et al. Human hepatic myofibroblasts increase invasiveness of hepa-tocellular carcinoma cells: evidence for a role of hepatocyte growth factor. Hepatology 1997; 26:1458–1466.

    Article  PubMed  CAS  Google Scholar 

  53. Neaud V, Hisaka T, Monvoisin A et al. Paradoxical pro-invasive effect of the serine proteinase inhibitor tissue factor pathway inhibitor-2 on human hepatocellular carcinoma cells. J Biol Chem 2000; 275:35565–35569.

    Article  PubMed  CAS  Google Scholar 

  54. Vande Broek I, Asosingh K, Allegaert V et al. Bone marrow endothelial cells increase the invasiveness of human multiple myeloma cells through upregulation of MMP-9: evidence for a role of hepatocyte growth factor. Leukemia 2004; 18:976–982.

    Article  PubMed  CAS  Google Scholar 

  55. Rivat C, De Wever O, Bruyneel E et al. Disruption of STAT3 signaling leads to tumor cell invasion through alterations of homotypic cell-cell adhesion complexes. Oncogene 2004; 23:3317–3327.

    Article  PubMed  CAS  Google Scholar 

  56. Le Floch N, Rivat C, De Wever O et al. The proinvasive activity of Wnt-2 is mediated through a noncanonical Wnt pathway coupled to GSK-3β and c-Jun/AP-1 signaling. FASEB J 2005; 19:144–146.

    PubMed  Google Scholar 

  57. Lee CC, Putnam AJ, Miranti CK et al. Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene 2004; 23:5193–5202.

    Article  PubMed  CAS  Google Scholar 

  58. Rosário M, Birchmeier W. How to make tubes: signaling by the Met receptor tyrosine kinase. Trends Cell Biol 2003; 13:328–335.

    Article  PubMed  CAS  Google Scholar 

  59. Hirai Y, Lochter A, Galosy S et al. Epimorphin functions as a key morphoregulator for mammary epithelial cells. J Cell Biol 1998; 140:159–169.

    Article  PubMed  CAS  Google Scholar 

  60. Bottaro DP, Liotta LA. Cancer: Out of air is not out of action. Nature 2003; 423:593–595.

    Article  PubMed  CAS  Google Scholar 

  61. Steeg PS. Metastasis suppressors alter the signal transduction of cancer cells. Nat Rev Cancer 2003; 3:55–63.

    Article  PubMed  CAS  Google Scholar 

  62. Pennacchietti S, Michieli P, Galluzzo M et al. Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 2003; 3:347–361.

    Article  PubMed  Google Scholar 

  63. Erickson HP, Inglesias JL. A six-armed oligomer isolated from cell surface fibronectin preparations. Nature 1984; 311:267–269.

    Article  PubMed  CAS  Google Scholar 

  64. Swindle CS, Tran KT, Johnson TD et al. Epidermal growth factor (EGF)-like repeats of human tenascin-C as ligands for EGF receptor. J Cell Biol 2001; 154:459–468.

    Article  PubMed  CAS  Google Scholar 

  65. Oberhauser AF, Marszalek PE, Erickson HP et al. The molecular elasticity of the extracellular matrix protein tenascin. Nature 1998; 393:181–185.

    Article  PubMed  CAS  Google Scholar 

  66. Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 2000; 218:235–259.

    Article  PubMed  CAS  Google Scholar 

  67. Tsunoda T, Inada H, Kalembeyi I et al. Involvement of large tenascin-C splice variants in breast cancer progression. Am J Pathol 2003; 162:1857–1867.

    PubMed  CAS  Google Scholar 

  68. Chiquet-Ehrismann R, Mackie EJ, Pearson CA et al. Tenascin: an extracellular matrix protein involved in tissue interactions during fetal development and oncogenesis. Cell 1986; 47:131–139.

    Article  PubMed  CAS  Google Scholar 

  69. Chiquet-Ehrismann R, Chiquet M. Tenascins: regulation and putative functions during pathological stress. J Pathol 2003; 200:488–499.

    Article  PubMed  CAS  Google Scholar 

  70. Chiquet-Ehrismann R, Kalla P, Pearson CA. Participation of tenascin and transforming growth factor-β in reciprocal epithelial-mesenchymal interactions of MCF7 cells and fibroblasts. Cancer Res 1989; 49:4322–4325.

    PubMed  CAS  Google Scholar 

  71. Goepel C, Buchmann J, Schultka R et al. Tenascin-A marker for the malignant potential of preinvasive breast cancers. Gynecol Oncol 2000; 79:372–378.

    Article  PubMed  CAS  Google Scholar 

  72. Goepel C, Stoerer S, Koelbl H. Tenascin in preinvasive lesions of the vulva and vulvar cancer. Anticancer Res 2003; 23:4587–4591.

    PubMed  Google Scholar 

  73. Wiksten JP, Lundin J, Nordling S et al. Tenascin-C expression correlates with prognosis in gastric cancer. Oncology 2003; 64:245–250.

    Article  PubMed  CAS  Google Scholar 

  74. Atula T, Hedstrom J, Finne P et al. Tenascin-C expression and its prognostic significance in oral and pharyngeal squamous cell carcinoma. Anticancer Res 2003; 23:3051–3056.

    PubMed  CAS  Google Scholar 

  75. Sis B, Sagol O, Kupelioglu A et al. Prognostic significance of matrix metalloproteinase-2, cathepsin D, and tenascin-C expression in colorectal carcinoma. Pathol Res Pract 2004; 200:379–387.

    Article  PubMed  CAS  Google Scholar 

  76. Ilmonen S, Jahkola T, Turunen JP et al. Tenascin-C in primary malignant melanoma of the skin. Histopathology 2004; 45:405–411.

    Article  PubMed  CAS  Google Scholar 

  77. Martin D, Brown-Luedi M, Chiquet-Ehrismann R. Tenascin-C signaling through induction of 14-3-3 tau. J Cell Biol 2003; 160:171–175.

    Article  PubMed  CAS  Google Scholar 

  78. Murphy-Ullrich JE. The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state? J Clin Invest 2001; 107:785–790.

    Article  PubMed  CAS  Google Scholar 

  79. Clark RA, Erickson HP, Springer TA. Tenascin supports lymphocyte rolling. J Cell Biol 1997; 137:755–765.

    Article  PubMed  CAS  Google Scholar 

  80. McKean DM, Sisbarro L, Ilic D et al. FAK induces expression of Prxl to promote tenascin-C-de-pendent fibroblast migration. J Cell Biol 2003; 161:393–402.

    Article  PubMed  CAS  Google Scholar 

  81. Chung CY, Murphy-Ullrich JE, Erickson HP. Mitogenesis, cell migration, and loss of focal adhesions induced by tenascin-C interacting with its cell surface receptor, annexin II. Mol Biol Cell 1996; 7:883–892.

    PubMed  CAS  Google Scholar 

  82. Saoncella S, Echtermeyer F, Denhez F et al. Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc Natl Acad Sci USA 1999; 96:2805–2810.

    Article  PubMed  CAS  Google Scholar 

  83. Fischer D, Brown-Lüdi M, Schulthess T et al. Concerted action of tenascin-C domains in cell adhesion, anti-adhesion and promotion of neurite outgrowth. J Cell Sci 1997; 110:1513–1522.

    PubMed  CAS  Google Scholar 

  84. Götz B, Scholze A, Clement A et al. Tenascin-C contains distinct adhesive, anti-adhesive, and neurite outgrowth promoting sites for neurons. J Cell Biol 1996; 132:681–699.

    Article  PubMed  Google Scholar 

  85. Wenk MB, Midwood KS, Schwarzbauer JE. Tenascin-C suppresses Rho activation. J Cell Biol 2000; 150:913–919.

    Article  PubMed  CAS  Google Scholar 

  86. Fukumura D, Xavier R, Sugiura T et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 1998; 94:715–725.

    Article  PubMed  CAS  Google Scholar 

  87. Olaso E, Salado C, Egilegor E et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 2003; 37:674–685.

    Article  PubMed  CAS  Google Scholar 

  88. De Wever O, Westbroek W, Verloes A et al. Critical role of N-cadherin in myofibroblast invasion and migration in vitro stimulated by colon-cancer-cell-derived TGF-β or wounding. J Cell Sci 2004; 117:4691–4703.

    Article  PubMed  CAS  Google Scholar 

  89. Derycke LDM, Bracke ME. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol 2004; 48:463–476.

    Article  PubMed  CAS  Google Scholar 

  90. Rønnov-Jessen L, Petersen OW. A function for filamentous a-smooth muscle actin: retardation of motility in fibroblasts. J Cell Biol 1996; 134:67–80.

    Article  PubMed  Google Scholar 

  91. Malmstrom J, Lindberg H, Lindberg C et al. Transforming growth factor-β1 specifically induce proteins involved in the myofibroblast contractile apparatus. Mol Cell Proteomics 2004; 3:466–477.

    Article  PubMed  CAS  Google Scholar 

  92. De Corte V, Bruyneel E, Boucherie C et al. Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling. EMBO J 2002; 21:6781–6790.

    Article  PubMed  Google Scholar 

  93. De Corte V, Van Impe K, Bruyneel E et al. Increased importin-β-induced nuclear import of the actin modulating protein CapG promotes cell invasion. J Cell Sci 2004; 117:5283–5292.

    Article  PubMed  CAS  Google Scholar 

  94. Mareel M, Leroy A. Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 2003; 83:337–376.

    PubMed  CAS  Google Scholar 

  95. Rivat C, Le Floch N, Sabbah M et al. Synergistic cooperation between AP-1 and LEF-1 transcription factors in the activation of the matrilysin promoter by the src oncogene: implications in cellular invasion. FASEB J 2003; 17:1721–1723.

    PubMed  CAS  Google Scholar 

  96. Rodrigues S, Attoub S, Nguyen Q-D et al. Selective abrogation of the proinvasive activity of the trefoil peptides pS2 and spasmolytic polypeptide by disruption of the EGF receptor signaling path ways in kidney and colonic cancer cells. Oncogene 2003; 22:4488–4497.

    Article  PubMed  CAS  Google Scholar 

  97. Rodrigues S, Van Aken E, Van Bocxlaer S et al. Trefoil peptides as proangiogenic factors in vivo and in vitro: implication of cyclooxygenase-2 and EGF receptor signaling. FASEB J 2003; 17:7–16.

    Article  PubMed  CAS  Google Scholar 

  98. Dvorak HF. Tumors: wounds that do not heal. N Engl J Med 1986; 315:1650–1659.

    Article  PubMed  CAS  Google Scholar 

  99. Desmouliere A, Redard M, Darby I et al. Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 1995; 146:56–66.

    PubMed  CAS  Google Scholar 

  100. Teofoli P, Barduagni S, Ribuffo M et al. Expression of Bcl-2, p53, c-jun and c-fos protooncogenes in keloids and hypertrophic scars. J Dermatol Sci 1999; 22:31–37.

    Article  PubMed  CAS  Google Scholar 

  101. De Wever O, Mareel M. Role of myofibroblasts at the invasion front. Biol Chem 2002; 383:55–67.

    Article  PubMed  Google Scholar 

  102. Derynck R, Akhurst RJ, Balmain A. TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29:117–129.

    Article  PubMed  CAS  Google Scholar 

  103. Parr C, Watkins G, Mansel RE et al. The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res 2004; 10:202–211.

    Article  PubMed  CAS  Google Scholar 

  104. Tanaka T, Shimura H, Sasaki T et al. Gallbladder cancer treatment using adenovirus expressing the HGF/NK4 gene in a peritoneal implantation model. Cancer Gene Ther 2004; 11:431–440.

    Article  PubMed  CAS  Google Scholar 

  105. Ohuchida K, Mizumoto K, Murakami M et al. Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor-stromal interactions. Cancer Res 2004; 64:3215–3222.

    Article  PubMed  CAS  Google Scholar 

  106. Wen J, Matsumoto K, Taniura N et al. Hepatic gene expression of NK4, an HGF-antagonist/angiogenesis inhibitor, suppresses liver metastasis and invasive growth of colon cancer in mice. Cancer Gene Ther 2004; 11:419–430.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier De Wever .

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

De Wever, O., Mareel, M. (2006). Pro-Invasive Molecular Cross-Signaling between Cancer Cells and Myofibroblasts. In: Tissue Repair, Contraction and the Myofibroblast. Biotechnology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33650-8_9

Download citation

Publish with us

Policies and ethics