Skip to main content

Carbon Nanotube Based Interconnect Technology: Opportunities and Challenges

  • Chapter

Abstract

As candidate materials for future wiring technologies, carbon nanotubes possess extraordinary physical and electrical characteristics. Carbon nanotubes have high current carrying capacity, excellent thermal conductivity, low thermal expansion coefficients, and are less susceptible to electromigration than conventional interconnect materials such as copper, tungsten and aluminum. It is likely that carbon nanotubes in combination with conventional materials will be implemented as a hybrid solution in on-chip interconnect technologies. Contact resistance at the nanotube–metal interface becomes a primary area for reliability engineering. Recent improvements in plasma based processing have demonstrated that individual, high-length-to-diameter ratio, vertically oriented carbon nanotubes can be fabricated to achieve architectures useful for advanced technologies. In this chapter, we present an overview of carbon nanotubes based electronics and describe our recent works in the development of carbon nanotube as a candidate interconnect material. The overview is limited to the fundamental characteristics of carbon nanotubes as implemented in wiring applications. We address the challenges and opportunities facing carbon nanotube implementation in CMOS semiconductor processing, as well as other possible nanoelectromechanical applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.T. Kelly, Physics of Graphite, Applied Science, 1981.

    Google Scholar 

  2. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1998.

    Google Scholar 

  3. K. Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, and S. Iijima, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, 306, p. 1362 (2004).

    Google Scholar 

  4. K.B.K. Teo, C. Singh, M. Chhowalla, and W.I. Milne, Catalytic synthesis of carbon nanotubes and nanofibers, Encyclopedia of Nanoscience and Nanotechnology, 1, pp. 665–686 (2004).

    Google Scholar 

  5. P.E. Nolan, D.C. Lynch, and A.H. Cutler, Carbon deposition and hydrocarbon formation on group VIII metal catalysts, J. Phys. Chem. B, 102, p. 4165 (1998).

    Google Scholar 

  6. L.M. Viculis, J.J. Mack, and R.B. Kaner, A chemical route to carbon nanoscrolls, Science, 299, p. 1361 (2003).

    Google Scholar 

  7. C.R. Martin, Nanomaterials—a membrane-based synthetic approach, Science, 266, p. 1961 (1994).

    Google Scholar 

  8. M. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego, 1996.

    Google Scholar 

  9. D.H. Robertson, D.W. Brenner, and J.W. Mintmire, Energetics of nanoscale graphitic tubules, Phys. Rev. B, 45, p. 12592 (1992).

    Google Scholar 

  10. S. Sawada and N. Hamada, Energetics of carbon nano-tubes, Solid State Comm., 83, p. 917 (1992).

    Google Scholar 

  11. T.W. Odom, J. Huang, P. Kim, and C.M. Lieber, Structure and electronic properties of carbon nanotubes, J. Phys. Chem. B, 104, p. 2794 (2000).

    Google Scholar 

  12. M. Meyyappan, Carbon Nanotubes: Science and Applications, Boca Raton, CRC Press, 2004.

    Google Scholar 

  13. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, and C. Dekker, Individual single-wall carbon nanotubes as quantum wires, Nature, 386, p. 474 (1997).

    Google Scholar 

  14. A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Ballistic carbon nanotube field-effect transistors, Nature, 424, p. 654 (2003).

    Google Scholar 

  15. D.J. Thouless, Maximum metallic resistance in thin wires, Phys. Rev. Lett., 39, p. 1167 (1977).

    Google Scholar 

  16. C.T. White and T.N. Todorov, Carbon nanotubes as long ballistic conductors, Nature, 393, p. 240 (1998).

    Google Scholar 

  17. A.G. Rinzler, et al., Large scale purification of single wall carbon nanotubes: process, product and characterization, Appl. Phys. A, 6, p. 29 (1998).

    Google Scholar 

  18. S. Frank, P. Poncharal, Z.L. Wang, and W.A. de Heer, Carbon nanotube quantum resistors, Science, 280, p. 1744 (1998).

    Google Scholar 

  19. P.G. Collins, M.S. Arnold, and P. Avouris, Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science, 292, p. 706 (2001).

    Google Scholar 

  20. P.J. de Pablo, E. Graugnard, B. Walsh, R.P. Andres, S. Datta, and R. Reifenberger, A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes, Appl. Phys. Lett, 74, p. 323 (1999).

    Google Scholar 

  21. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, p. 666 (2004).

    Google Scholar 

  22. J. Lu and J. Han, Carbon nanotubes and nanotube-based nano devices, Int. J. High Speed Electron. Sys., 9, p. 101 (1998).

    Google Scholar 

  23. R.S. Ruoff, D. Qian, and W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements, C.R. Physique, 4, p. 993 (2003).

    Google Scholar 

  24. M.M.J. Treacy, et al., Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 381, pp. 678–680 (1996).

    Google Scholar 

  25. D. Srivastava, M. Menon, and K. Cho, Nanoplasticity of single-walled carbon nanotubes under uniaxial compression, Phys. Rev. Lett., 83, p. 2973 (1999).

    Google Scholar 

  26. J.-P. Salvetat-Delmotte and A. Rubio, Mechanical properties of carbon nanotubes: a fiber digest for beginners, Carbon, 40, pp. 1729–1734 (2002).

    Google Scholar 

  27. D. Qian, G.J. Wagner, W.K. Liu, M.-F. Yu, and R.S. Ruoff, Mechanics of carbon nanotubes, Appl. Mech. Rev., 55, p. 495 (2002).

    Google Scholar 

  28. E.V. Barrera, Key methods for developing single wall nanotube composites, J. Mater., 52, p. 38 (2000).

    Google Scholar 

  29. J. Sandler, et al., Development of a dispersion process for carbon nanotubes in a epoxy matrix and the resulting electrical properties, Polymer, 40, p. 5967 (1999).

    Google Scholar 

  30. C. Park, et al., Dispersion of single wall carbon nanotubes by in situ polymerization under sonication, Chem. Phys. Lett., 364, p. 303 (2002).

    Google Scholar 

  31. J.-M. Benoit, et al., Transport properties of PMMA carbon nanotubes composites, Synth. Metals, 121, p. 1215 (2001).

    Google Scholar 

  32. R. Safdi, R. Andrews, and E.A. Grulke, Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films, J. Appl. Polymer Sci., 84, p. 2660 (2002).

    Google Scholar 

  33. B.E. Kilbride, et al., Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films, J. Appl. Phys., 92, p. 4024 (2002).

    Google Scholar 

  34. M.S.P. Shaffer and A.H. Windle, Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites, Adv. Mater., 11, p. 938 (1999).

    Google Scholar 

  35. G.-D. Zhan, et al., Electrical properties of nanoceramics reinforced with ropes of single-walled carbon nanotubes, Appl. Phys. Lett., 83, p. 1228 (2003).

    Google Scholar 

  36. R.Z. Ma, et al., Processing and properties of carbon nanotubes-nano-SiC ceramics, J. Mater. Sci., 33, p. 5243 (1998).

    Google Scholar 

  37. G.L. Hwang and K.C. Hwang, Carbon nanotube reinforced ceramics, J. Mater. Chem., 11, p. 1722 (2001).

    Google Scholar 

  38. J.-M. Ting and M.L. Lake, Vapor grown carbon fiber reinforced aluminum composites with very high thermal conductivity, J. Mater. Res., 10, p. 247 (1995).

    Google Scholar 

  39. S.R. Dong, et al., An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes, Mater. Sci. Eng. A, 313, p. 83 (2001).

    Google Scholar 

  40. R. Zong, et al., Fabrication of nano-Al based composites reinforced by single-walled carbon nanotubes, Carbon, 41, p. 848 (2003).

    Google Scholar 

  41. H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, and R.E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature, 384, p. 147 (1996).

    Google Scholar 

  42. S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, and C. M Lieber, Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology, Nature, 394, p. 52 (1998).

    Google Scholar 

  43. C.V. Nguyen, K. Chao, R.M. Stevens, L. Delzeit, A. Cassell, J. Han, and M. Meyyappan, Carbon nanotube tip probes: stability and lateral resolution in scanning probe microscopy and application to surface science in semiconductors, Nanotechnol., 12, p. 363 (2001).

    Google Scholar 

  44. Q. Ye, A.M. Cassell, H. Liu, K.-J. Chao, J. Han, and M. Meyyappan, Large-scale fabrication of carbon nanotube probe tips for atomic force microscopy critical dimension imaging applications, Nano. Lett., 4, p. 1301 (2004).

    Google Scholar 

  45. M. Desquesnes, S.V. Rotkin, and N.R. Aluru, Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches, Nanotechnol., 13, p. 120 (2002).

    Google Scholar 

  46. S.W. Lee, D.S. Lee, R.E. Morjan, S.H. Jhang, M. Sveningsson, O.A. Nerushev, Y.W. Park, and E.E.B. Campbell, A three-terminal carbon nanorelay, Nano. Lett., 4, p. 2027 (2004).

    Google Scholar 

  47. J.M. Kinaret, T. Nord, and S. Viefers, A carbon-nanotube-based nanorelay, Appl. Phys. Lett., 82, p. 1287 (2003).

    Google Scholar 

  48. P. Kim, L. Shi, A. Majumdar, and P.L. McCuen, Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett., 87, p. 215502 (2001).

    Google Scholar 

  49. J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, and J.E. Fischer, Quantized phonon spectrum of single-wall carbon nanotubes, Science, 289, p. 1730 (2000).

    Google Scholar 

  50. J. Hone, M.C. Llagun, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fischer, Thermal properties of carbon nanotubes and nanotube based materials, Appl. Phys. A, 74, p. 339 (2002).

    Google Scholar 

  51. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, and E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, p. 2252 (2001).

    Google Scholar 

  52. M.J. Biercuk, M.C. Llaguno, M. Radosavljevic, J.K. Hyun, A.T. Johnson, and J.E. Fischer, Carbon nanotube composites for thermal management, Appl. Phys. Lett., 80, p. 2767 (2002).

    Google Scholar 

  53. H.F. Chuang, S.M. Cooper, M. Meyyappan, and B.A. Cruden, Improvement of thermal contact resistance by carbon nanotubes and nanofibers, J. Nanosci. Nanotech., 4, p. 964 (2004).

    Google Scholar 

  54. Q. Ngo, B.A. Cruden, A.M. Cassell, G. Sims, M. Meyyappan, J. Li, and C.Y. Yang, Thermal interface properties of Cu-filled vertically aligned carbon nanofiber arrays, Nano. Lett., 4, p. 2403 (2004).

    Google Scholar 

  55. F. Entwisle, Thermal expansion of pyrolytic graphite, Phys. Lett., 2, pp. 236–238 (1962).

    Google Scholar 

  56. E.A. Heintz, The measurement of the coefficient of thermal expansion of graphite artefacts, Carbon, 28, p. 233 (1990).

    Google Scholar 

  57. H. Jiang, B. Liu, Y. Huang, and K.C. Hwang, Thermal expansion of single wall carbon nanotubes, J. Eng. Matr. And Technol., 126, p. 265 (2004).

    Google Scholar 

  58. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 p. 56 (1991).

    Google Scholar 

  59. T.W. Ebbesen and P.M. Ajayan, Large scale synthesis of carbon nanotubes, Nature, 358, p. 220 (1992).

    Google Scholar 

  60. A. Thess, et al., Crystalline ropes of metallic carbon nanotubes, Science, 273, p. 483 (1996).

    Google Scholar 

  61. R.O. Loutfy, et al., in E. Osawa, Ed., Perspectives Fullerene Nanotechnology, Kluwer, Dordrecht, 2002, p. 35.

    Google Scholar 

  62. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, and H. Dai, Synthesis of individual single salled carbon nanotubes on patterned silicon wafers, Nature, 395, p. 878 (1998).

    Google Scholar 

  63. S.S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, and H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283, p. 512 (1999).

    Google Scholar 

  64. A.M. Cassell, J.A. Raymakers, J. Kong, and H. Dai, Large-scale CVD synthesis of single walled carbon nanotubes, J. Phys. Chem. B, 103, p. 6484 (1999).

    Google Scholar 

  65. H. Dai, et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide, Chem. Phys. Lett., 260, p. 471 (1996).

    Google Scholar 

  66. B.C. Satishkumar, A. Govindraj, R. Sen, and C.N.R. Rao, Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures, Chem. Phys. Lett., 293, p. 47 (1998).

    Google Scholar 

  67. P. Nikolaev, et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett., 313, p. 91 (1999).

    Google Scholar 

  68. Y. Avigal and R. Kalish, Growth of aligned carbon nanotubes by biasing during growth, Appl. Phys. Lett., 78, p. 2291 (2001).

    Google Scholar 

  69. Y. Zhang, et al., Electric-field-directed growth of aligned single-walled carbon nanotubes, Appl. Phys. Lett., 79, p. 3155 (2001).

    Google Scholar 

  70. M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, Carbon nanotube growth by PECVD: a review, Plasma Sources Sci. Technol., 12, p. 205 (2003).

    Google Scholar 

  71. L. Delzeit, et al., Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor, J. Appl. Phys., 91, p. 6027 (2002).

    Google Scholar 

  72. K. Matthews, B. Cruden, B. Chen, M. Meyyappan, and L. Delzeit, Plasma enhanced chemical vapor deposition of multiwalled carbon nanofibers, J. Nanosci. Nanotech., 2, p. 475 (2002).

    Google Scholar 

  73. G.W. Ho, A.T.S. Wee, J. Lin, and W.C. Tjiu, Synthesis of well-aligned multiwalled carbon nanotubes on Ni catalyst using radio frequency plasma-enhanced chemical vapor deposition, Thin Solid Films, 388, p. 73 (2001).

    Google Scholar 

  74. H. Ishida, et al., Experimental study of fullerene-family formation using radio-frequency-discharge reactive plasmas, Thin Solid Films, 407, p. 26 (2002).

    Google Scholar 

  75. N. Satake, et al., Production of carbon nanotubes by controlling radio-frequency glow discharge with reactive gases, Physica B, 323, p. 290 (2002).

    Google Scholar 

  76. Y.H. Wang, et al., Synthesis of large area aligned carbon nanotube arrays from C2H2–H2 mixture by rf plasma-enhanced chemical vapor deposition, Appl. Phys. Lett., 79, p. 680 (2001).

    Google Scholar 

  77. L. Valentini, et al., Formation of carbon nanotubes by plasma enhanced chemical vapor deposition: role of nitrogen and catalyst layer thickness, J. Appl. Phys., 92, p. 6188 (2002).

    Google Scholar 

  78. B.O. Boskovic, et al., Large-area synthesis of carbon nanofibres at room temperature, Nature Mater., 1, p. 165 (2002).

    Google Scholar 

  79. L.C. Qin, D. Zhou, A.R. Krauss, and D.M. Gruen, Growing carbon nanotubes by microwave plasma-enhanced chemical vapor deposition, Appl. Phys. Lett., 72, p. 3437 (1998).

    Google Scholar 

  80. O. Kuttel, et al., Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma, Appl. Phys. Lett., 73, p. 2113 (1998).

    Google Scholar 

  81. S.H. Tsai, C.W. Chao, C.L. Lee, and H.C. Shin, Bias-enhanced nucleation and growth of the aligned carbon nanotubes with open ends under microwave plasma synthesis, Appl. Phys. Lett., 74, p. 3462 (1999).

    Google Scholar 

  82. Q. Zhang, et al., Carbon films with high density nanotubes produced using microwave plasma assisted CVD, J. Phys. Chem. Solids, 61, p. 1179 (2000).

    Google Scholar 

  83. Y.C. Choi, et al., Growth of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition at low temperature, J. Vac. Sci. Technol. A, 18, p. 1864 (2000).

    Google Scholar 

  84. Y.C. Choi, et al., Effect of surface morphology of Ni thin film on the growth of aligned carbon nanotubes by microwave plasma-enhanced chemical vapor deposition, J. Appl. Phys., 88, p. 4898 (2000).

    Google Scholar 

  85. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Structure of carbon nanotubes grown by microwave-plasma-enhanced chemical vapor deposition, Appl. Phys. Lett., 77, p. 3468 (2000).

    Google Scholar 

  86. C. Bower, W. Zhu, S. Jin, and O. Zhou, Plasma-induced alignment of carbon nanotubes, Appl. Phys. Lett., 77, p. 830 (2000).

    Google Scholar 

  87. H. Cui, O. Zhou, and B.R. Stoner, Deposition of aligned bamboo-like carbon nanotubes via microwave plasma enhanced chemical vapor deposition, J. Appl. Phys., 88, p. 6072 (2000).

    Google Scholar 

  88. Y. Chen, et al., Well-aligned graphitic nanofibers synthesized by plasma-assisted chemical vapor deposition, Chem. Phys. Lett., 272, p. 178 (1997).

    Google Scholar 

  89. Y. Chen, L.P. Guo, D.J. Johnson, and R.H. Prince, Plasma-induced low-temperature growth of graphitic nanofibers on nickel substrates, J. Cryst. Growth, 193, p. 342 (1998).

    Google Scholar 

  90. Z.F. Ren, et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science, 282, p. 1105 (1998).

    Google Scholar 

  91. J. Han, et al., Growth and emission characteristics of vertically well-aligned carbon nanotubes grown on glass substrate by hot filament plasma-enhanced chemical vapor deposition, J. Appl. Phys., 88, p. 7363 (2000).

    Google Scholar 

  92. Y. Hayashi, T. Negishi, and S. Nishino, Growth of well-aligned carbon nanotubes on nickel by hot-filament-assisted dc plasma chemical vapor deposition in a CH4/H2 plasma, J. Vac. Sci. Technol. A, 19, p. 1796 (2001).

    Google Scholar 

  93. Z.P. Huang, et al., Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes, Appl. Phys. A, 74, p. 387 (2002).

    Google Scholar 

  94. B.A. Cruden, A.M. Cassell, Q. Ye, and M. Meyyappan, Reactor design considerations in the hot filament/direct current plasma synthesis of carbon nanofibers, J. Appl. Phys., 94, p. 4070 (2003).

    Google Scholar 

  95. V.I. Merkulov, et al., Patterned growth of individual and multiple vertically aligned carbon nanofibers, Appl. Phys. Lett., 76, p. 3555 (2000).

    Google Scholar 

  96. V.I. Merkulov, et al., Shaping carbon nanostructures by controlling the synthesis process, Appl. Phys. Lett., 79, p. 1178 (2001).

    Google Scholar 

  97. V.I. Merkulov, et al., Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition, Appl. Phys. Lett., 79, p. 2970 (2001).

    Google Scholar 

  98. K.B.K. Teo, et al., Uniform patterned growth of carbon nanotubes without surface carbon, Appl. Phys. Lett., 79, p. 1534 (2001).

    Google Scholar 

  99. M. Chhowalla, et al., Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys., 90, p. 5308 (2001).

    Google Scholar 

  100. K.B.K. Teo, et al., Characterization of plasma-enhanced chemical vapor deposition carbon nanotubes by Auger electron spectroscopy, J. Vac. Sci. Technol., B, 20, p. 116 (2002).

    Google Scholar 

  101. M. Tanemura, et al., Growth of aligned carbon nanotubes by plasma-enhanced chemical vapor deposition: optimization of growth parameters, J. Appl. Phys., 90, p. 1529 (2001).

    Google Scholar 

  102. J. Han, et al., NH3 effect on the growth of carbon nanotubes on glass substrate in plasma enhanced chemical vapor deposition, Thin Solid Films, 409, p. 120 (2002).

    Google Scholar 

  103. J. Han, et al., Tip growth model of carbon tubules grown on the glass substrate by plasma enhanced chemical vapor deposition, J. Appl. Phys., 91, p. 483 (2002).

    Google Scholar 

  104. Y.Y. Wei, et al., Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition, Appl. Phys. Lett., 78, p. 1394 (2001).

    Google Scholar 

  105. F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, and W. Hönlein, Carbon nanotubes in interconnect applications, Microelectronic Engineering, 64, p. 399 (2002).

    Google Scholar 

  106. G.S. Duesberg, et al.Growth of isolated carbon nanotubes with lithographically defined diameter and location, Nano. Lett., 3, p. 257 (2003).

    Google Scholar 

  107. M. Nihei, A. Kawabata, and Y. Awano, Direct diameter-controlled growth of multiwall carbon nanotubes on nickel-silicide layer, Jpn. J. Appl. Phys., 42(6B), pp. L721–L723 (2003).

    Google Scholar 

  108. M. Horibe, M. Nihei, D. Kondo, A. Kawabata, and Y. Awano, Mechanical polishing technique for carbon nanotube interconnects in ULSIs, Jpn. J. Appl. Phys., 43(9A), p. 6499 (2004).

    Google Scholar 

  109. B.Q. Wei, R. Vajtai, and P.M. Ajayan, Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett., 79, p. 1172 (2001).

    Google Scholar 

  110. J. Li, et al., Electronic properties of multiwalled carbon nanotubes in an embedded vertical array, Appl. Phys. Lett., 81, p. 910 (2002).

    Google Scholar 

  111. J. Li, et al., A bottom-up approach for carbon nanotube interconnects, Appl. Phys. Lett., 82, p. 2491 (2003).

    Google Scholar 

  112. International Technology Roadmap For Semiconductors (ITRS), Edition 2003.

    Google Scholar 

  113. P. Kapur, J.P. McVittie, and K.C. Saraswat, Technology and reliability constrained future copper interconnects. I. Resistance modeling, IEEE Trans. Elect. Dev., 49, p. 590 (2002).

    Google Scholar 

  114. P. Kapur, G. Chandra, J.P. McVittie, and K.C. Saraswat, Technology and reliability constrained future copper interconnects. II. Performance implications, IEEE Trans. Elect. Dev., 49, p. 598 (2002).

    Google Scholar 

  115. H. Hwang, M. Meyyappan, G.S. Mathad, and R. Ranade, Simulations and experiments of etching of silicon in HBr plasmas for high aspect ratio features, J. Vac. Sci. Technol. B, 20, p. 2199 (2002).

    Google Scholar 

  116. M.S. Dresselhaus, G. Dresselhaus, K. Sugihara, I.L. Spain, and H.A. Goldberg, in M. Cardona, Ed., Graphite Fibers and Filaments, Springer Series in Materials Science, Vol. 5, New York, 1988, pp. 188–202.

    Google Scholar 

  117. L. Zhang, D. Austin, V.I. Merkulov, A.V. Meleshko, K.L. Klein, M.A. Guillorn, D.H. Lowndes, and M.L. Simpson, Four-probe charge transport measurements on individual vertically aligned carbon nanofibers, Appl. Phys. Lett., 84, p. 3972 (2004).

    Google Scholar 

  118. M.P. Anantram, S. Datta, and Y. Xue, Coupling of carbon nanotubes to metallic contacts, Phys. Rev. B, 61, p. 14219 (2000).

    Google Scholar 

  119. N. Mingo and J. Han, Conductance of metallic carbon nanotubes dipped into metal, Phys. Rev. B, 64, p. 201401 (2001).

    Google Scholar 

  120. R. Rosen, W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, and O. Zhou, Application of carbon nanotubes as electrodes in gas discharge tubes, Appl. Phys. Lett., 76, p. 1668 (2000).

    Google Scholar 

  121. K.B.K. Teo, et al., Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow?, Nanotechnology, 14, p. 204 (2003).

    Google Scholar 

  122. A. Rochefort, P. Avouris, F. Lesage, and D.R. Salahub, Electrical and mechanical properties of distorted carbon nanotubes, Phys. Rev. B, Condens. Matter, 60, p. 13824 (1999).

    Google Scholar 

  123. A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schonenberger, J.-P. Salvetat, J.-M. Bonard, and L. Forro, Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements, Appl. Phys. Lett., 73, p. 274 (1998).

    Google Scholar 

  124. J. Appenszeller, R. Martel, P. Avouris, H. Stahl, and B. Lengeler, Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes, Appl. Phys. Lett., 78, p. 3313 (2001).

    Google Scholar 

  125. Q. Ngo, D. Petranovic, S. Krishnan, A.M. Cassell, Q. Ye, J. Li, M. Meyyappan, and C.Y. Yang, Electron transport through metal-multiwall carbon nanotube interfaces, IEEE Trans. Nanotechnol., 3, p. 311 (2004).

    Google Scholar 

  126. J. Tersoff, Contact resistance of carbon nanotubes, Appl. Phys. Lett., 74, p. 2122 (1999).

    Google Scholar 

  127. M.P. Anantram, Which nanowire couples better electrically to a metal contact: armchair or zigzag nanotube? Appl. Phys. Lett., 78, p. 2055 (2001).

    Google Scholar 

  128. S.-H. Rhee, Y. Du, and P.S. Ho, Thermal stress characteristics of Cu/oxide and Cu/low-k submicron interconnect structures, J. Appl. Phys., 93, p. 3926 (2003).

    Google Scholar 

  129. H.J. Qi, K.B.K. Teo, K.K.S. Lau, M.C. Boyce, W.I. Milne, J. Robertson, and K.K. Gleason, Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation, J. Mech. Phys. Solids, 51, p. 2213 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cassell, A.M., Li, J. (2007). Carbon Nanotube Based Interconnect Technology: Opportunities and Challenges. In: Suhir, E., Lee, Y.C., Wong, C.P. (eds) Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging. Springer, Boston, MA. https://doi.org/10.1007/0-387-32989-7_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-32989-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-27974-9

  • Online ISBN: 978-0-387-32989-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics