Skip to main content

Abstract

Human mitochondria contain their own genome, mtDNA. This small molecule encodes 24 RNA species and 13 polypeptides, which are essential components of the mitochondrial respiratory chain. The mitochondrial genome is present in hundreds or thousands of copies in each cell and is believed to turnover throughout the life of the cell. Defects of the mitochondrial genome (mtDNA) cause a variety of multisystemic disorders routinely affecting the muscle and nervous system. There is currently no effective treatment for patients with defects of the mitochondrial genome. In many patients, defective cells harbour two sub-populations of mtDNA (a situation termed heteroplasmy), one being normal, the other containing the pathogenic mutation. The mutated copy is often recessive, with biochemical and clinical defects only becoming apparent when the levels of mutated mtDNA outweigh the normal copies. It has therefore been postulated that by selectively preventing replication of the mutated mtDNA, the normal copy will propagate, restoring biochemical function. The search has therefore been on during recent years to identify an antigenomic molecule that will fulfil this criterion. Following evidence that peptide nucleic acids could selectively inhibit replication of templates carrying a known pathogenic mtDNA mutation in vitro, we report on the progress of this approach and the various modifications that are now being used to improve the efficacy of PNA-based antigenomic inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell BG et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290:457–465.

    Article  PubMed  CAS  Google Scholar 

  2. Piko L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 1987; 123:364–376.

    Article  PubMed  CAS  Google Scholar 

  3. Chinnery PF, Turnbull DM. Mitochondrial DNA and disease. Lancet 1999; 354(Suppl 1):117–121.

    Google Scholar 

  4. Chinnery PF, Johnson MA, Wardell TM et al. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 2000; 48:188–193.

    Article  PubMed  CAS  Google Scholar 

  5. Lightowlers RN, Chinnery PF, Turnbull DM et al. Mammalian mitochondrial genetics: Heredity, heteroplasmy and disease. Trends Genet 1997; 13:450–455.

    Article  PubMed  CAS  Google Scholar 

  6. Chomyn AA, Martinuzzi M, Yoneda A et al. MELAS mutation in mtDNA binding site for transcription termination factor causes defects in protein synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci USA 1992; 89:4221–4225.

    Article  PubMed  CAS  Google Scholar 

  7. Chrzanowska-Lightowlers ZM, Lightowlers RN, Turnbull DM. Gene therapy for mitochondrial DNA defects: Is it possible? Gene Therapy 1995; 2(5):311–316.

    PubMed  CAS  Google Scholar 

  8. Chang DD, Clayton DA. Priming of human mitochondrial DNA replication occurs at the light-strand promoter. Proc Natl Acad Sci USA 1985; 82(2):351–355.

    Article  PubMed  CAS  Google Scholar 

  9. Hixson JE, Wong TW, Clayton DA. Both the conserved stem-loop and the divergent 5′-flanking sequences are required for initiation at the human mitochondrial origin of light-strand replication. J Biol Chem 1986; 261(5):2384–2390.

    PubMed  CAS  Google Scholar 

  10. Holt IJ, Lorimer HE, Jacobs HT. Coupled leading-and lagging-strand synthesis of mammalian mtDNA. Cell 2000; 100:515–524.

    Article  PubMed  CAS  Google Scholar 

  11. MITOMAP: A human mitochondrial genome database. Center for Molecular Medicine. Altanta, GA, USA: Emory University, 2001.

    Google Scholar 

  12. Schon EA, Rizzuto R, Moraes CT et al. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 1989; 244:346–349.

    Article  PubMed  CAS  Google Scholar 

  13. Taylor RW, Wardell TM, Connolly BA et al. Linked oligodeoxynucleotides show binding cooperativity and can selectively impair replication of deleted mitochondrial DNA templates. Nucleic Acids Res 2001; 29:3404–3412.

    Article  PubMed  CAS  Google Scholar 

  14. Nielsen PE and Egholm M, eds. Peptide Nucleic Acids: Protocols and applications. Wymondham, England: Horizon Scientific Press, 1999.

    Google Scholar 

  15. Demidov VV, Potaman VN, Frank-Kamenetskii MD et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem Pharmacol 1994; 48(6):1310–1313.

    Article  PubMed  CAS  Google Scholar 

  16. Egholm M, Buchart O, Christensen L et al. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 1993; 365:566–568.

    Article  PubMed  CAS  Google Scholar 

  17. Orum H, Nielsen PE, Egholm M et al. Single base pair mutation analysis by PNA directed PCR clamping. Nucl Acids Res 1993; 21(23):5332–5336.

    Article  PubMed  CAS  Google Scholar 

  18. Taylor RW, Chinnery PF, Turnbull DM et al. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nature Genet 1997; 15:212–215.

    Article  PubMed  CAS  Google Scholar 

  19. Bennett RM. As nature intended? The uptake of DNA and oligonucleotides by eukaryotic cells. Antisense Res Dev 1993; 3:53–66.

    Google Scholar 

  20. Chinnery PF, Taylor RW, Diekert K et al. Peptide nucleic acid delivery to human mitochondria. Gene Ther 1999; 6(12):1919–1928.

    Article  PubMed  CAS  Google Scholar 

  21. Pfanner N, Neupert W. The mitochondrial protein import apparatus. Annu Rev Biochem 1990; 59:331–353.

    Article  PubMed  CAS  Google Scholar 

  22. Rizzuto R, Brini M, Pizzo P et al. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol 1995; 5(6):635–642.

    Article  PubMed  CAS  Google Scholar 

  23. Murphy M. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol 1997; 15(8):326–330.

    Article  PubMed  CAS  Google Scholar 

  24. Smith RAJ, Porteous CM, Coulter CV et al. Selective targeting of an antioxidant to mitochondria. Eur J Biochem 1999; 263:709–716.

    Article  PubMed  CAS  Google Scholar 

  25. Kelso GF, Porteous CM, Coulter CV et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: Antioxidant and antiapoptotic properties. J Biol Chem 2000; 276:4588–4596.

    Article  PubMed  Google Scholar 

  26. Muratovska A, Lightowlers RN, Taylor RW et al. Targeting of peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: Implications for mitochondrial DNA replication, expression and disease. Nucleic Acids Res 2001; 29:1852–1863.

    Article  PubMed  CAS  Google Scholar 

  27. Taylor RW, Wardell TM, Smith PM et al. An antigenomic strategy for treating heteroplasmic mtDNA disorders. Adv Drug Deliv Rev 2001; 49:121–125.

    Article  PubMed  CAS  Google Scholar 

  28. Kuhn H, Demidov VV, Neilsen PE et al. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA. J Mol Biol 1999; 286:1337–1345.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Smith, P.M., Ross, G.F., Wardell, T.M., Taylor, R.W., Turnbull, D.M., Lightowlers, R.N. (2006). The Use of PNAs and Their Derivatives in Mitochondrial Gene Therapy. In: Peptide Nucleic Acids, Morpholinos and Related Antisense Biomolecules. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-32956-0_16

Download citation

Publish with us

Policies and ethics