Skip to main content

Prenatal Programming of Human Motor Function

  • Chapter
Book cover Early Life Origins of Health and Disease

Abstract

In a world in which athletic skill is often valued more highly than intellectual prowess, we know surprisingly little about the development of the human motor system. Even less is known about how an adverse intrauterine event or environment might program motor learning, memory and function throughout the lifespan. We are only beginning to investigate how events during development of the brain and central nervous system might predispose some individuals to older age onset of some common neurological disorders such as Parkinson’s and Alzheimer’s diseases. Anecdotal and empirical evidence suggests that one or more adverse events occurring in utero may result in long-term changes in neuromotor development. These changes may be evident from infancy, or not become apparent until later in life. This chapter reviews this evidence. We suggest that the research focus must shift towards neurophysiological rather than neurodevelopmental paradigms, if these programmed changes in neuromotor function and the mechanisms responsible are to be fully understood. We also introduce the idea that the impact on the individual of maladaptive neuromotor programming might be reduced by the development of early intervention therapies, which utilise the developing nervous system’s capacity for plastic change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bui BV, Rees SM, Loeliger M et al. Altered retinal function and structure after chronic placental insufficiency. Invest Ophthalmol Vis Sci 2002; 43(3):805–812.

    PubMed  Google Scholar 

  2. Zubrick SR, Kurinczuk JJ, McDermott BM et al. Fetal growth and subsequent mental health problems in children aged 4 to 13 years. Dev Med Child Neurol 2000; 42(1):14–20.

    Article  PubMed  CAS  Google Scholar 

  3. Spinillo A, Stronati M, Ometto A et al. Infant neurodevelopmental outcome in pregnancies complicated by gestational hypertension and intra-uterine growth retardation. J Perinat Med 1993; 21(3):195–203.

    Article  PubMed  CAS  Google Scholar 

  4. Dunn HG, Crichton JU, Grunau RV et al. Neurological, psychological and educational sequelae of low birth weight. Brain Dev 1980; 2(1):57–67.

    PubMed  CAS  Google Scholar 

  5. Newman DG, O’Callaghan MJ, Harvey JM et al. Characteristics at four months follow-up of infants born small for gestational age: a controlled study. Early Human Dev 1997; 49(3):169–181.

    Article  CAS  Google Scholar 

  6. Strauss R, Dietz W. Growth and development of term children born with low birth weight: Effects of genetic and environmental factors. J Pediatr 1998; 133(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  7. Bos AF, Einspieler C, Prechtl HF. Intrauterine growth retardation, general movements, and neurodevelopmental outcome: a review. Dev Med Child Neurol 2001; 43(1):61–68.

    Article  PubMed  CAS  Google Scholar 

  8. Berger-Sweeney J, Hohmann CF. Behavioral consequences of abnormal cortical development: insights into developmental disabilities. Behav Brain Res 1997; 86(2):121–142.

    Article  PubMed  CAS  Google Scholar 

  9. Monk CS, Webb SJ, Nelson CA. Prenatal neurobiological development: molecular mechanisms and anatomical change. Dev Neuropsychol 2001; 19(2):211–236.

    Article  PubMed  CAS  Google Scholar 

  10. Rees S, Harding R. Brain development during fetal life: influences of the intra-uterine environment. Neurosci Lett 2004; 361(1–3):111–114.

    Article  PubMed  CAS  Google Scholar 

  11. Kuzniecky RI, Barkovich AJ. Malformations of cortical development and epilepsy. Brain Dev 2001; 23(1):2–11.

    Article  PubMed  CAS  Google Scholar 

  12. Barkovich AJ, Kuzniecky RI, Jackson GD et al. Classification system for malformations of cortical development: Update 2001. Neurology 2001; 57(12):2168–2178.

    PubMed  CAS  Google Scholar 

  13. Krageloh-Mann I. Imaging of early brain injury and cortical plasticity. Exp Neurol 2004; 190(Suppl 1):84–90.

    Article  Google Scholar 

  14. Gramsbergen A. Clumsiness and disturbed cerebellar development: insights from animal experiments. Neural Plast 2003; 10(1–2):129–140.

    PubMed  Google Scholar 

  15. Chase HP, Welch NN, Dabiere CS et al. Alterations in human brain biochemistry following intrauterine growth retardation. Pediatrics 50(3):403–411.

    Google Scholar 

  16. Chase HP, Lindsley WF Jr, O’Brien D. Undernutrition and cerebellar development. Nature 1969; 221(180):554–555.

    Article  PubMed  CAS  Google Scholar 

  17. Neville HE, Chase HP. Undernutrition and cerebellar development. Exp Neurol 1971; 33(3):485–497.

    Article  PubMed  CAS  Google Scholar 

  18. Toft PB, Leth H, Ring PB et al. Volumetric analysis of the normal infant brain and in intrauterine growth retardation. Early Human Dev 1995; 43(1):15–29.

    Article  CAS  Google Scholar 

  19. Mallard C, Loeliger M, Copolov D et al. Reduced number of neurons in the hippocampus and the cerebellum in the postnatal guinea-pig following intrauterine growth-restriction. Neuroscience 2000; 100(2):327–333.

    Article  PubMed  CAS  Google Scholar 

  20. Rees S, Mallard C, Breen S et al. Fetal Brain Injury Following Prolonged Hypoxemia and Placental Insufficiency: A Review. Comp Biochem Physiol-A: Molec Integr Physiol 1998; 119(3):653–660.

    Article  CAS  Google Scholar 

  21. Sasaki J, Fukami E, Mimura S et al. Abnormal cerebral neuronal migration in a rat model of intrauterine growth retardation induced by synthetic thromboxane A2. Early Human Dev 2000; 58(2):91–99.

    Article  CAS  Google Scholar 

  22. Tashima L, Nakata M, Anno K et al. Prenatal influence of ischemia-hypoxia-induced intrauterine growth retardation on brain development and behavioral activity in rats. Biol Neonate 2001; 80(1):81–87.

    Article  PubMed  CAS  Google Scholar 

  23. Lane RH, Ramirez RJ, Tsirka AE et al. Uteroplacental insufficiency lowers the threshold towards hypoxia-induced cerebral apoptosis in growth-retarded fetal rats. Brain Res 2001; 895(1–2):186–193.

    Article  PubMed  CAS  Google Scholar 

  24. Sakamoto H, Kuzuya H, Tamaru M et al. Developmental changes in the NGF content in the brain of young, growing, low-birth-weight rats. Neurochem Res 1998; 23(1):115–120.

    Article  PubMed  CAS  Google Scholar 

  25. Bisignano M, Rees S. The effects of intrauterine growth retardation on synaptogenesis and mitochondrial formation in the cerebral and cerebellar cortices of fetal sheep. Int J Dev Neurosci 1988; 6(5):453–460.

    Article  PubMed  CAS  Google Scholar 

  26. Rees S, Bocking AD, Harding R. Structure of the fetal sheep brain in experimental growth retardation. J Dev Physiol 1988; 10(3):211–225.

    PubMed  CAS  Google Scholar 

  27. Quirk GJ, Mejia WR, Hesse H et al. Early malnutrition followed by nutritional restoration lowers the conduction velocity and excitability of the corticospinal tract. Brain Res 1995; 670(2):277–282.

    Article  PubMed  CAS  Google Scholar 

  28. Sima A, Sourander P. The effect of pre and postnatal undernutrition on the calibre growth of central motor fibres: a morphometric ultrastructural study on rat cortico-spinal tract. Acta Neuropathol (Berl). 1976; 34(2):105–114.

    Article  PubMed  CAS  Google Scholar 

  29. Sima A, Sourander P. The effect of pre and postnatal undernutrition on axonal growth and myelination of central motor fibers. A morphometric study on rat cortico-spinal tract. Acta Neuropathol (Berl). 1978; 42(1):15–18.

    Article  PubMed  CAS  Google Scholar 

  30. Martin JH, Choy M, Pullman S et al. Corticospinal system development depends on motor experience. J Neurosci 2004; 24(9):2122–2132.

    Article  PubMed  CAS  Google Scholar 

  31. Wood SL, Beyer BK, Cappon GD. Species comparison of postnatal CNS development: functional measures. Birth Defects Res Part B Dev Reprod Toxicol 2003; 68(5):391–407.

    Article  CAS  Google Scholar 

  32. Prechtl HF, Einspieler C, Cioni G et al. An early marker for neurological deficits after perinatal brain lesions. Lancet 1997; 349(9062):1361–1363.

    Article  PubMed  CAS  Google Scholar 

  33. Prechtl HFR. The importance of fetal movements. In: Connolly KJ, Forssberg H, eds. Neurophysiology and Neuropsychology of Motor Development. Series No. 143 ed. London: Mac Keith Press; 1997:42–53.

    Google Scholar 

  34. Forssberg H. Neural control of human motor development. Curr Opin Neurobiol 1999; 9(6):676–682.

    Article  PubMed  CAS  Google Scholar 

  35. Pearson KG. Generating the walking gait: role of sensory feedback. Prog Brain Res 2004; 143:123–129.

    Article  PubMed  Google Scholar 

  36. Bekedam DJ, Visser GH, de Vries JJ et al. Motor behaviour in the growth retarded fetus. Early Hum Dev 1985; 12(2):155–165.

    Article  PubMed  CAS  Google Scholar 

  37. Prechtl HF, Fargel JW, Weinmann HM et al. Postures, motility and respiration of low-risk preterm infants. Dev Med Child Neurol 1979; 21(1):3–27.

    Article  PubMed  CAS  Google Scholar 

  38. Hadders-Algra M. General movements: a window for early identification of children at high risk for developmental disorders. J Pediatr 2004; 145(Suppl 1):S12–S18.

    PubMed  Google Scholar 

  39. Prechtl HFR. General movement assessment as a method of developmental neurology: new paradigms and their consequences The 1999 Ronnie MacKeith Lecture. Dev Med Child Neurol 2001; 43(12):836–842.

    Article  PubMed  CAS  Google Scholar 

  40. Zuk L, Harel S, Leitner Y et al. Neonatal general movements: an early predictor for neurodevelopmental outcome in infants with intrauterine growth retardation. J Child Neurol 2004; 19(1):14–18.

    PubMed  Google Scholar 

  41. Bos AF, van Loon AJ, Martijn A et al. Spontaneous motility in preterm, small-for-gestational age infants I. Quantitative aspects. Early Human Dev 1997; 50(1):115–129.

    Article  CAS  Google Scholar 

  42. Henderson-Smart DJ. Postnatal consequences of chronic intrauterine compromise. Reprod Fertil Dev 1995; 7(3):559–565.

    Article  PubMed  CAS  Google Scholar 

  43. Markestad T, Vik T, Ahlsten G et al. Small-for-gestational-age (SGA) infants born at term: growth and development during the first year of life. Acta Obstet Gynecol Scand Suppl 1997; 165:93–101.

    PubMed  CAS  Google Scholar 

  44. Martikainen MA. Effects of intrauterine growth retardation and its subtypes on the development of the preterm infant. Early Hum Dev 1992; 28(1):7–17.

    Article  PubMed  CAS  Google Scholar 

  45. Glascoe FP, Byrne KE, Ashford LG et al. Accuracy of the Denver-II in developmental screening. Pediatrics 1992; 89(6 Pt 2):1221–1225.

    PubMed  CAS  Google Scholar 

  46. Roelants-van Rijn AM, van der Grond J, Stigter RH et al. Cerebral structure and metabolism and long-term outcome in small-for-gestational-age preterm neonates. Pediatr Res 2004; 56(2):285–290.

    Article  PubMed  Google Scholar 

  47. Hediger ML, Overpeck MD, Ruan WJ et al. Birthweight and gestational age effects on motor and social development. Paediatr Perinat Epidemiol 2002; 16(1):33–46.

    Article  PubMed  Google Scholar 

  48. Thornton JG, Hornbuckle J, Vail A et al. Gs. Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet 2004; 364(9433):513–520.

    Article  PubMed  CAS  Google Scholar 

  49. Hutton JL, Pharoah POD, Cooke RWI et al. Differential effects of preterm birth and small gestational age on cognitive and motor development. Arch Dis Child Fetal Neonatal Ed 1997; 76(2):F75–81.

    PubMed  CAS  Google Scholar 

  50. Fancourt R, Campbell S, Harvey D et al. Follow-up study of small-for-dates babies. Br Med J 1976; 1(6023):1435–1437.

    Article  PubMed  CAS  Google Scholar 

  51. Harvey D, Prince J, Bunton J et al. Abilities of children who were small-for-gestational-age babies. Pediatrics 1982; 69(3):296–300.

    PubMed  CAS  Google Scholar 

  52. Neligan GA, Kolvin I, Scott DM et al. Born too soon or born too small: A follow-up study to seven years of age. Vol 61. London: William Heinemann Medical Books, Spastics International Medical Publications, 1976.

    Google Scholar 

  53. Leitner Y, Fattal-Valevski A, Geva R et al. Six-year follow-up of children with intrauterine growth retardation: long-term, prospective study. J Child Neurol 2000; 15(12):781–786.

    PubMed  CAS  Google Scholar 

  54. Low JA, Galbraith RS, Muir D et al. Intrauterine growth retardation: a study of long-term morbidity. Am J Obstet Gynecol 1982; 142(6 Pt 1):670–677.

    PubMed  CAS  Google Scholar 

  55. Sommerfelt K, Sonnander K, Skranes J et al. Neuropsychologic and motor function in small-for-gestation preschoolers. Pediatr Neurol 2002; 26(3):186–191.

    Article  PubMed  Google Scholar 

  56. Chaudhari S, Otiv M, Chitale A et al. Pune low birth weight study—cognitive abilities and educational performance at twelve years. Indian Pediatr 2004; 41(2):121–128.

    PubMed  Google Scholar 

  57. Evensen KAI, Vik T, Helbostad J et al. Motor skills in adolescents with low birth weight. Arch Dis Child Fetal Neonatal Ed 2004; 89(5):F451–455.

    Article  PubMed  CAS  Google Scholar 

  58. Cooke RWI, Foulder-Hughes L. Growth impairment in the very preterm and cognitive and motor performance at 7 years. Arch Dis Child 2003; 88(6):482–487.

    Article  PubMed  CAS  Google Scholar 

  59. Pitcher JB, Robertson AL, Miles TS et al. The influence of birthweight on neuromotor outcomes in adult humans. Paper presented at: 31st Fetal & Neonatal Physiological Society Annual Meeting, 2004; Castelvecchio Pascoli, Italy.

    Google Scholar 

  60. Mandich A, Polatajko HJ. Developmental coordination disorder: Mechanisms, measurement and management. Human Mov Sci 2003; 22(4–5):407–411.

    Article  Google Scholar 

  61. Darrah J, Redfern L, Maguire TO et al. Intra-individual stability of rate of gross motor development in full-term infants. Early Human Dev 1998; 52(2):169–179.

    Article  CAS  Google Scholar 

  62. Swanson MW, Bennett FC, Shy KK et al. Identification of neurodevelopmental abnormality at four and eight months by the movement assessment of infants. Dev Med Child Neurol 1992; 34(4):321–337.

    Article  PubMed  CAS  Google Scholar 

  63. Largo RH, Fischer JE, Rousson V. Neuromotor development from kindergarten age to adolescence: developmental course and variability. Swiss Med Wkly 2003; 133(13–14):193–199.

    PubMed  CAS  Google Scholar 

  64. Georgieff M. Intrauterine growth retardation and subsequent somatic growth and neurodevelopment. J Pediatr 1998; 133(1):3–5.

    Article  PubMed  CAS  Google Scholar 

  65. Wassermann EM, McShane LM, Hallett M et al. Noninvasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 1992; 85(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  66. Wilson SA, Thickbroom GW, Mastaglia FL. Transcranial magnetic stimulation mapping of the motor cortex in normal subjects—the representation of 2 intrinsic hand muscles. J Neurol Sci 1993; 118(2):134–144.

    Article  PubMed  CAS  Google Scholar 

  67. Thickbroom GW, Sammut R, Mastaglia FL. Magnetic stimulation mapping of motor cortex-factors contributing to map area. Electromyography and Motor Control-Electroencephalography and Clinical Neurophysiology 1998; 109(2):79–84.

    Article  CAS  Google Scholar 

  68. Mortifee P, Stewart H, Schulzer M et al. Reliability of transcranial magnetic stimulation for mapping the human motor cortex. Electroencephalogr Clin Neurophysiol 1994; 93(2):131–137.

    Article  PubMed  CAS  Google Scholar 

  69. Taylor JL, Fogel W, Day BL et al. Ipsilateral cortical stimulation inhibited the long-latency response to stretch in the long finger flexors in humans. J Physiol 1995; 488 (Pt 3):821–831.

    PubMed  CAS  Google Scholar 

  70. Ridding MC, Rothwell JC. Reorganisation in Human Motor Cortex. Can J Physiol Pharmacol 1995; 73(2):218–222.

    PubMed  CAS  Google Scholar 

  71. Chen R, Corwell B, Yaseen Z et al. Mechanisms of cortical reorganization in lower-limb amputees. J Neurosci 1998; 18(9):3443–3450.

    PubMed  CAS  Google Scholar 

  72. Elbert T, Pantev C, Wienbruch C et al. Increased cortical representation of the fingers of the left hand in string players. Science 1995; 270(5234):305–307.

    Article  PubMed  CAS  Google Scholar 

  73. Cohen LG, Celnik P, Pascual Leone A et al. Functional relevance of cross-modal plasticity in blind humans. Nature 1997; 389(6647):180–183.

    Article  PubMed  CAS  Google Scholar 

  74. Pascual Leone A, Torres F. Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 1993; 116(Pt 1):39–52.

    Article  PubMed  Google Scholar 

  75. Pascual Leone A, Wassermann EM, Sadato N et al. The role of reading activity on the modulation of motor cortical outputs to the reading hand in Braille readers. Ann Neurol 1995; 38(6):910–915.

    Article  PubMed  CAS  Google Scholar 

  76. Classen J, Cohen LG. Practice-induced plasticity in the human motor cortex. In: Boniface S, Ziemann U, eds. Plasticity in the Human Nervous System: Investigation with Transcranial Magnetic Stimulation. Cambridge: Cambridge University Press; 2003:90–106.

    Google Scholar 

  77. Ridding MC, Brouwer B, Miles TS et al. Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 2000; 131(1):135–143.

    Article  PubMed  CAS  Google Scholar 

  78. Ridding MC, McKay DR, Thompson PD et al. Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol 2001; 112(8):1461–1469.

    Article  PubMed  CAS  Google Scholar 

  79. Hamdy S, Rothwell JC, Aziz Q et al. Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nature Neurosci 1998; 1(1):64–68.

    Article  PubMed  CAS  Google Scholar 

  80. Eyre JA, Miller S, Clowry GJ et al. Functional corticospinal projections are established prenatally in the human foetus permitting involvement in the development of spinal motor centres. Brain 2000; 123(Pt 1):51–64.

    Article  PubMed  Google Scholar 

  81. Nezu A, Kimura S, Takeshita S. Topographical differences in the developmental profile of central motor conduction time. Clin Neurophysiol 1999; 110(9):1646–1649.

    Article  PubMed  CAS  Google Scholar 

  82. Muller K, Ebner B, Homberg V. Maturation of fastest afferent and efferent central and peripheral pathways: no evidence for a constancy of central conduction delays. Neurosci Lett 1994; 166(1):9–12.

    Article  PubMed  CAS  Google Scholar 

  83. Eyre J, Taylor J, Villagra F et al. Exuberant ipsilateral corticospinal projections are present in the human newborn and withdrawn during development probably involving an activity-dependent process. Dev Med Child Neurol 2000; 82:12.

    Google Scholar 

  84. Olivier E, Edgley SA, Armand J et al. An electrophysiological study of the postnatal development of the corticospinal system in the macaque monkey. J Neurosci 1997; 17(1):267–276.

    PubMed  CAS  Google Scholar 

  85. Holland BA, Haas DK, Norman DV et al. MRI of normal brain maturation. AJNR Am J Neuroradiol 1986; 7(2):201–208.

    PubMed  CAS  Google Scholar 

  86. Paus T, Zijdenbos A, Worsley K et al. Structural maturation of neural pathways in children and adolescents: in vivo study. Science 1999; 283(5409):1908–1911.

    Article  PubMed  CAS  Google Scholar 

  87. Nezu A, Kimura S, Uehara S et al. Magnetic stimulation of motor cortex in children: maturity of corticospinal pathway and problem of clinical application. Brain Dev 1997; 19(3):176–180.

    Article  PubMed  CAS  Google Scholar 

  88. Bhatia BD, Prakash U. Electrophysiological studies in preterm and growth retarded low birth weight babies. Electromyogr Clin Neurophysiol 1993; 33(8):507–509.

    PubMed  CAS  Google Scholar 

  89. Garvey MA, Ziemann U, Bartko JJ et al. Cortical correlates of neuromotor development in healthy children. Clin Neurophysiol 2003; 114(9):1662–1670.

    Article  PubMed  CAS  Google Scholar 

  90. Masur H, Althoff S, Kurlemann G et al. Inhibitory period and late muscular responses after transcranial magnetic stimulation in healthy children. Brain Dev 1995; 17(2):149–152.

    Article  PubMed  CAS  Google Scholar 

  91. Triggs WJ, Calvanio R, Macdonell RA et al. Physiological motor asymmetry in human handedness: evidence from transcranial magnetic stimulation. Brain Res 1994; 636(2):270–276.

    Article  PubMed  CAS  Google Scholar 

  92. O’Callaghan MJ, Burn YR, Mohay HA et al. The prevalence and origins of left hand preference in high risk infants, and its implications for intellectual, motor and behavioural performance at four and six years. Cortex 1993; 29(4):617–627.

    PubMed  CAS  Google Scholar 

  93. O’Callaghan MJ, Burn YR, Mohay HA et al. Handedness in extremely low birth weight infants: aetiology and relationship to intellectual abilities, motor performance and behaviour at four and six years. Cortex 1993; 29(4):629–637.

    PubMed  CAS  Google Scholar 

  94. Johnston MV. Brain plasticity in paediatric neurology. Eur J Paediatr Neurol 2003; 7(3):105–113.

    Article  PubMed  Google Scholar 

  95. Pascual Leone A, Cammarota A, Wassermann EM et al. Modulation of motor cortical outputs to the reading hand of braille readers. Ann Neurol 1993; 34(1):33–37.

    Article  PubMed  CAS  Google Scholar 

  96. Nudo RJ, Plautz EJ, Frost SB. Role of adaptive plasticity in recovery of function after damage to motor cortex. Musc Nerve 2001; 24(8):1000–1019.

    Article  CAS  Google Scholar 

  97. Pitcher JB, Ridding MC, Miles TS. Frequency-dependent, bi-directional plasticity in motor cortex of human adults. Clin Neurophysiol 2003; 114(7):1265–1271.

    Article  PubMed  Google Scholar 

  98. Siebner HR, Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 2003; 148(1):1–16.

    Article  PubMed  Google Scholar 

  99. Gangitano M, Valero-Cabre A, Tormos JM et al. Modulation of input-output curves by low and high frequency repetitive transcranial magnetic stimulation of the motor cortex. Clin Neurophysiol 2002; 113(8):1249–1257.

    Article  PubMed  Google Scholar 

  100. Muellbacher W, Ziemann U, Boroojerdi B et al. Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 2000; 111(6):1002–1007.

    Article  PubMed  CAS  Google Scholar 

  101. Johnston MV. Clinical disorders of brain plasticity. Brain Dev 2004; 26(2):73–80.

    Article  PubMed  Google Scholar 

  102. Schneider ML, Coe CL, Lubach GR. Endocrine activation mimics the adverse effects of prenatal stress on the neuromotor development of the infant primate. Dev Psychobiol 1992; 25(6):427–439.

    Article  PubMed  CAS  Google Scholar 

  103. Schneider ML, Coe CL. Repeated social stress during pregnancy impairs neuromotor development of the primate infant. J Dev Behav Pediatr 1993; 14(2):81–87.

    Article  PubMed  CAS  Google Scholar 

  104. Schneider ML, Roughton EC, Koehler AJ et al. Growth and Development Following Prenatal Stress Exposure in Primates: An Examination of Ontogenetic Vulnerability. Child Dev 1999; 70(2):263–274.

    Article  PubMed  CAS  Google Scholar 

  105. Patin V, Vincent A, Lordi B et al. Does prenatal stress affect the motoric development of rat pups? Dev Brain Res 2004; 149(2):85–92.

    Article  CAS  Google Scholar 

  106. Barzilai A, Melamed E. Molecular mechanisms of selective dopaminergic neuronal death in Parkinson’s disease. Trends Molec Med 2003; 9(3):126–132.

    Article  CAS  Google Scholar 

  107. Eichele G. Retinoids: from hindbrain patterning to Parkinson disease. Trends Genet 1997; 13(9):343–345.

    Article  PubMed  CAS  Google Scholar 

  108. Hermanson E, Joseph B, Castro D et al. Nurrl regulates dopamine synthesis and storage in MN9D dopamine cells. Exp Cell Res 2003; 288(2):324–334.

    Article  PubMed  CAS  Google Scholar 

  109. Holson RR, Adams J, Ferguson SA. Gestational stage-specific effects of retinoic acid exposure in the rat. Neurotoxicol Teratol 1999; 21(4):393–402.

    Article  PubMed  CAS  Google Scholar 

  110. Perrone-Capano C, Da Pozzo P, di Porzio U. Epigenetic cues in midbrain dopaminergic neuron development. Neurosci Biobehav Rev 2000; 24(1):119–124.

    Article  PubMed  CAS  Google Scholar 

  111. Neumann CS, Walker EF. Motor dysfunction in schizotypal personality disorder. Schizophr Res 1999; 38(2–3):159–168.

    Article  PubMed  CAS  Google Scholar 

  112. Neumann CS, Walker EF. Neuromotor functioning in adolescents with schizotypal personality disorder: associations with symptoms and neurocognition. Schizophr Bull 2003; 29(2):285–298.

    PubMed  Google Scholar 

  113. Herlenius E, Lagercrantz H. Neurotransmitters and neuromodulators during early human development. Early Human Dev. 2001; 65(1):21–37.

    Article  CAS  Google Scholar 

  114. Herlenius E, Lagercrantz H. Development of neurotransmitter systems during critical periods. Exp Neurol 2004; 190(Suppl 1):8–21.

    Article  CAS  Google Scholar 

  115. Singer JH, Berger AJ. Development of inhibitory synaptic transmission to motoneurons. Brain Res Bull 2000; 53(5):553–560.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia B. Pitcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Pitcher, J.B., Henderson-Smart, D.J., Robinson, J.S. (2006). Prenatal Programming of Human Motor Function. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_4

Download citation

Publish with us

Policies and ethics