Skip to main content

Programming Effects of Moderate and Binge Alcohol Consumption

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 573))

Summary

Until recently, studies pertaining to the effect(s) of prenatal alcohol on fetal and postnatal development have largely focussed on teratogenic outcomes. These studies have generally utilized excessive alcohol exposure models, and examined resultant outcomes that are gross and can be measured in the offspring as a fetus or at birth. Very few studies have addressed the possible long term, or programming, effects of prenatal alcohol exposure. Even observational studies in humans with fetal alcohol syndrome have been limited, as noted by Day and Richardson, consisting of “too few studies to assess accurately the effect of drinking on development beyond the neonatal period”. These authors go on to speculate that the effects observed in humans represent only, “the more severe end of a continuum of effects”. As we learn more about the origins and various mechanisms of human fetal programming, animal studies of fetal exposure to socially relevant amounts of alcohol are likely to grow in importance. Alcohol exposure is an important contributing factor to small birth weight in human populations and may also contribute to the production of the small birth weight phenotype. In addition, because the effects of moderate fetal alcohol exposure resemble the phenotype of other animal models of fetal programming, there is an experimental advantage to using alcohol to generate the phenotype and investigate the underlying initiating and mediating mechanisms. Alcohol exposure can be targeted to a single time point or spread over a longer period, and the dose can be easily titrated. For these and other reasons that will become apparent only as we learn more, the studies of developmental programming of adult disease and those of the subtle pathophysiological effects of moderate maternal alcohol consumption are bound to become increasingly linked.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kalter H. Teratology in the 20th century: Environmental causes of congenital malformations in humans and how they were established. Neurotoxicol Teratol 2003; 25(2):131–282.

    Article  PubMed  CAS  Google Scholar 

  2. Barker DJP. Mothers, Babies and Health in Later Life. 2nd ed. Edinburgh: Churchill Livingstone, 1998.

    Google Scholar 

  3. Moushmoush B, Abi-Mansour P. Alcohol and the heart. The long-term effects of alcohol on the cardiovascular system. Arch Intern Med 1991; 151(1):36–42.

    Article  PubMed  CAS  Google Scholar 

  4. Australian Social Trends 1995 Health-Risk factors: Alcohol use. Canberra: Australian Bureau of Statistics, 1995.

    Google Scholar 

  5. Drinking to excess rising among women. Office of national statistics. Available at: www.statistics.gov.uk, 2004.

    Google Scholar 

  6. Morse J. Women on a binge. Time 2002; 159:56–61.

    Google Scholar 

  7. Kesmodel U, Kesmodel PS, Larsen A et al. Use of alcohol and illicit drugs among pregnant Danish women, 1998. Scand J Public Health 2003; 31(1):5–11.

    Article  PubMed  Google Scholar 

  8. Maier SE, Miller JA, West JR. Prenatal binge-like alcohol exposure in the rat results in region-specific deficits in brain growth. Neurotoxicol Teratol 1999; 21(3):285–291.

    Article  PubMed  CAS  Google Scholar 

  9. Maier SE, West JR. Drinking patterns and alcohol-related birth defects. Alcohol Res Health 2001; 25(3):168–174.

    PubMed  CAS  Google Scholar 

  10. Mihalick SM, Crandall JE, Langlois JC et al. Prenatal ethanol exposure, generalized learning impairment, and medial prefrontal cortical deficits in rats. Neurotoxicol Teratol 2001; 23(5):453–462.

    Article  PubMed  CAS  Google Scholar 

  11. Phillips DI. Programming of adrenocortical function and the fetal origins of adult disease. J Endocrinol Invest 2001; 24(9):742–746.

    PubMed  CAS  Google Scholar 

  12. Ward AM, Syddall HE, Wood PJ et al. Fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis: Low birth weight and central HPA regulation. J Clin Endocrinol Metab 2004; 89(3):1227–1233.

    Article  PubMed  CAS  Google Scholar 

  13. Aird F, Halasz I, Redei E. Ontogeny of hypothalamic corticotropin-releasing factor and anterior pituitary pro-opiomelanocortin expression in male and female offspring of alcohol-exposed and adrenalectomized dams. Alcohol Clin Exp Res 1997; 21(9):1560–1566.

    PubMed  CAS  Google Scholar 

  14. Ogilvie KM, Rivier C. Prenatal alcohol exposure results in hyperactivity of the hypothalamic-pituitary-adrenal axis of the offspring: modulation by fostering at birth and postnatal handling. Alcohol Clin Exp Res 1997; 21(3):424–429.

    PubMed  CAS  Google Scholar 

  15. Sinha P, Halasz I, Choi JF et al. Maternal adrenalectomy eliminates a surge of plasma dehydroepiandrosterone in the mother and attenuates the prenatal testosterone surge in the male fetus. Endocrinology 1997; 138(11):4792–4797.

    Article  PubMed  CAS  Google Scholar 

  16. Wilcoxon JS, Schwartz J, Aird F et al. Sexually dimorphic effects of maternal alcohol intake and adrenalectomy on left ventricular hypertrophy in rat offspring. Am J Physiol Endocrinol Metab 2003; 285(1):E31–39.

    PubMed  CAS  Google Scholar 

  17. Revskoy S, Halasz I, Redei E. Corticotropin-releasing hormone and proopiomelanocortin gene expression is altered selectively in the male rat fetal thymus by maternal alcohol consumption. Endocrinology 1997; 138(1):389–396.

    Article  PubMed  CAS  Google Scholar 

  18. Ward IL, Ward OB, Affuso JD et al. Fetal testosterone surge: Specific modulations induced in male rats by maternal stress and/or alcohol consumption. Horm Behav 2003; 43(5):531–539.

    Article  PubMed  CAS  Google Scholar 

  19. Lee S, Schmidt D, Tilders F et al. Increased activity of the hypothalamic-pituitary-adrenal axis of rats exposed to alcohol in utero: Role of altered pituitary and hypothalamic function. Mol Cell Neurosci 2000; 16(4):515–528.

    Article  PubMed  CAS  Google Scholar 

  20. Kim CK, Turnbull AV, Lee SY et al. Effects of prenatal exposure to alcohol on the release of adenocorticotropic hormone, corticosterone, and proinflammatory cytokines. Alcohol Clin Exp Res 1999; 23(1):52–59.

    PubMed  CAS  Google Scholar 

  21. Yirmiya R, Chiappelli F, Tio DL et al. Effects of prenatal alcohol and pair feeding on lipopolysaccharide-induced secretion of TNF-alpha and corticosterone. Alcohol 1998; 15(4):327–335.

    Article  PubMed  CAS  Google Scholar 

  22. Lee S, Blanton CA, Rivier C. Prenatal ethanol exposure alters the responsiveness of the rat hypothalamic-pituitary-adrenal axis to nitric oxide. Alcohol Clin Exp Res 2003; 27(6):962–969.

    PubMed  CAS  Google Scholar 

  23. Lee S, Rivier C. Prenatal alcohol exposure blunts interleukin-1-induced ACTH and beta-endorphin secretion by immature rats. Alcohol Clin Exp Res 1993; 17(5):940–945.

    PubMed  CAS  Google Scholar 

  24. Wilcoxon JS, Redei EE. Prenatal programming of adult thyroid function by alcohol and thyroid hormones. Am J Physiol Endocrinol Metab 2004; 287(2):E318–326.

    Article  PubMed  CAS  Google Scholar 

  25. Morris DL, Harms PG, Petersen HD et al. LHRH and LH in peripubertal female rats following prenatal and/or postnatal ethanol exposure. Life Sci 1989; 44(17):1165–1171.

    Article  PubMed  CAS  Google Scholar 

  26. Knee DS, Sato AK, Uyehara CF et al. Prenatal exposure to ethanol causes partial diabetes insipidus in adult rats. Am J Physiol Regul Integr Comp Physiol 2004; 287(2):R277–283.

    PubMed  CAS  Google Scholar 

  27. Ewald SJ, Walden SM. Flow cytometric and histological analysis of mouse thymus in fetal alcohol syndrome. J Leukoc Biol 1988; 44(5):434–440.

    PubMed  CAS  Google Scholar 

  28. Zhu X, Seelig Jr LL. Developmental aspects of intestinal intraepithelial and lamina propria lymphocytes in the rat following placental and lactational exposure to ethanol. Alcohol Alcohol 2000; 35(1):25–30.

    PubMed  CAS  Google Scholar 

  29. Weinberg J, Jerrells TR. Suppression of immune responsiveness: Sex differences in prenatal ethanol effects. Alcohol Clin Exp Res 1991; 15(3):525–531.

    Article  PubMed  CAS  Google Scholar 

  30. Norman DC, Chang MP, Castle SC et al. Diminished proliferative response of con A-blast cells to interleukin 2 in adult rats exposed to ethanol in utero. Alcohol Clin Exp Res 1989; 13(1):69–72.

    Article  PubMed  CAS  Google Scholar 

  31. Giberson PK, Kim CK, Hutchison S et al. The effect of cold stress on lymphocyte proliferation in fetal ethanol-exposed rats. Alcohol Clin Exp Res 1997; 21(8):1440–1447.

    PubMed  CAS  Google Scholar 

  32. Wong CM, Chiappelli F, Chang MP et al. Prenatal exposure to alcohol enhances thymocyte mitogenic responses postnatally. Int J Immunopharmacol 1992; 14(2):303–309.

    Article  PubMed  CAS  Google Scholar 

  33. Chen L, Nyomba BL. Effect of prenatal alcohol exposure on glucose tolerance in the rat offspring. Metabolism 2003; 52(4):1454–462.

    Article  CAS  Google Scholar 

  34. Chen L, Nyomba BL. Glucose intolerance and resistin expression in rat offspring exposed to ethanol in utero: Modulation by postnatal high-fat diet. Endocrinology 2003; 144(2):500–508.

    Article  PubMed  CAS  Google Scholar 

  35. Lopez-Tejero D, Llobera M, Herrera E. Permanent abnormal response to a glucose load after prenatal ethanol exposure in rats. Alcohol 1989; 6(6):469–473.

    Article  PubMed  CAS  Google Scholar 

  36. Pennington JS, Shuvaeva TI, Pennington SN. Maternal dietary ethanol consumption is associated with hypertriglyceridemia in adult rat offspring. Alcohol Clin Exp Res 2002; 26(6):848–855.

    PubMed  CAS  Google Scholar 

  37. Webster WS, Germain MA, Lipson A et al. Alcohol and congenital heart defects: An experimental study in mice. Cardiovasc Res 1984; 18(6):335–338.

    Article  PubMed  CAS  Google Scholar 

  38. Uphoff C, Nyquist-Battie C, Toth R. Cardiac muscle development in mice exposed to ethanol in utero. Teratology 1984; 30(1):119–129.

    Article  PubMed  CAS  Google Scholar 

  39. Syslak PH, Nathaniel EJ, Novak C et al. Fetal alcohol effects on the postnatal development of the rat myocardium: An ultrastructural and morphometric analysis. Exp Mol Pathol 1994; 60(3):158–172.

    Article  PubMed  CAS  Google Scholar 

  40. Wold LE, Norby FL, Hintz KK et al. Prenatal ethanol exposure alters ventricular myocyte contractile function in the offspring of rats: Influence of maternal Mg2+ supplementation. Cardiovasc Toxicol 2001; 1(3):215–224.

    Article  PubMed  CAS  Google Scholar 

  41. Ren J, Wold LE, Natavio M et al. Influence of prenatal alcohol exposure on myocardial contractile function in adult rat hearts: Role of intracellular calcium and apoptosis. Alcohol Alcohol 2002; 37(1):30–37.

    PubMed  CAS  Google Scholar 

  42. Turcotte LA, Aberle NS, Norby FL et al. Influence of prenatal ethanol exposure on vascular contractile response in rat thoracic aorta. Alcohol 2002; 26(2):75–81.

    Article  PubMed  CAS  Google Scholar 

  43. Schwartz J, Cameron V, Jarvis M et al. Lifetime cardiovascular effects of a single exposure to ethanol in utero. Paper presented at: Experimental Biology, 2004.

    Google Scholar 

  44. Stromland K, Pinazo-Duran MD. Ophthalmic involvement in the fetal alcohol syndrome: Clinical and animal model studies. Alcohol Alcohol 2002; 37(1):2–8.

    PubMed  CAS  Google Scholar 

  45. Gonzalez ER. New ophthalmic findings in fetal alcohol syndrome. Jama 1981; 245(2):108.

    Article  PubMed  CAS  Google Scholar 

  46. Addolorato G, Gasbarrini A, Marcoccia S et al. Prenatal exposure to ethanol in rats: Effects on liver energy level and antioxidant status in mothers, fetuses, and newborns. Alcohol 1997; 14(6):569–573.

    Article  PubMed  CAS  Google Scholar 

  47. Meyers AF, Gong Y, Zhang M et al. Liver development in a rat model of fetal alcohol syndrome. Dig Dis Sci 2002; 47(4):767–772.

    Article  PubMed  CAS  Google Scholar 

  48. Gallo PV, Weinberg J. Organ growth and cellular development in ethanol-exposed rats. Alcohol 1986; 3(4):261–267.

    Article  PubMed  CAS  Google Scholar 

  49. Assadi FK, Manaligod JR, Fleischmann LE et al. Effects of prenatal ethanol exposure on postnatal renal function and structure in the rat. Alcohol 1991; 8(4):259–263.

    Article  PubMed  CAS  Google Scholar 

  50. Day NL, Richardson GA. Prenatal alcohol exposure: A continuum of effects. Semin Perinatol 1991; 15(4):271–279.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Schwartz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Schwartz, J., Carey, L.C. (2006). Programming Effects of Moderate and Binge Alcohol Consumption. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_15

Download citation

Publish with us

Policies and ethics