Skip to main content

Modelling Line Tension in Wetting

  • Chapter
Book cover Modeling of Soft Matter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 141))

Abstract

Line tension can be viewed as the analogue, for three-phase contact, of surface tension. However, obtaining a coherent picture from the different avenues followed to model line tension is much harder than the analogous operation for surface tension. This essentially reflects the extreme sensitivity of line tension to the details of the model employed. Line tension has an impact on the equilibrium and stability of fluid droplets laid on a rigid substrate, in the presence of a vapor phase. In particular, the sign of line tension is a critical issue, that gave rise to conflicting interpretations. Here, we review the approaches to line tension from microscopic to macroscopic scales, stressing the mathematical problems involved. We also illustrate a stability criterion for wetting functionals to clarify the rôle of the sign of line tension. As an application, we discuss how stability of liquid bridges near the wetting or the dewetting transition mirrors the scaling laws for surface and line tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.W. Gibbs, On the equilibrium of heterogeneous substances, In The Collected Papers of J. Willard Gibbs Vol. I, 55–353. London: Yale University Press, 1957.

    Google Scholar 

  2. D.J. Steigmann and D. Li, Energy-minimizing states of capillary systems with bulk, surface, and line phases, IMA J. Appl. Math. 55: 1–17, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Drelich, The significance and magnitude of the line tension in three-phase (solid-liquid-fiuid) systems, Colloid Surface A 116: 43–54, 1996.

    Article  Google Scholar 

  4. A. Amirfazli and A.W. Neumann, Status of the three-phase line tension, Adv. Colloid Interf. Sci. 110: 121–141, 2004.

    Article  Google Scholar 

  5. T. Getta and S. Dietrich, Line tension between fluid phases and a substrate, Phys. Rev. E 57: 655–671, 1998.

    Article  Google Scholar 

  6. Y. Solomentsev and L. R. White, Microscopic drop profiles and the origins of line tension, J. Colloid Interf. Sci. 218: 122–136, 1999.

    Article  Google Scholar 

  7. J.O. Indekeu, Line tension near the wetting transition: results from an interface dispacement model, Physica A 183: 439–461, 1992.

    Article  MathSciNet  Google Scholar 

  8. H. Dobbs, The elasticity of a contact line, Physica A 271: 36–47, 1999.

    Article  Google Scholar 

  9. P. Tarazona and G. Navascués, A statistical mechanical theory for line tension, J. Chem. Phys. 75: 3114–3120, 1981.

    Article  Google Scholar 

  10. V.G. Babak, Generalised line tension theory revisited., Colloid Surface A 156: 423–448, 1999.

    Article  Google Scholar 

  11. D. Li and D.J. Steigmann, Positive line tension as a requirement of stable equilibrium. Colloids Surface A 116: 25–30, 1996.

    Article  Google Scholar 

  12. G. Alberti, G. Bouchitté, and P. Seppecher, Phase transition with the linetension effect. Arch. Ration. Mech. Anal. 144: 1–46, 1998.

    Article  MATH  Google Scholar 

  13. J.S. Rowlinson and B. Widom, Molecular Theory of Capillarity, Dover, Mineola, 2002.

    Google Scholar 

  14. L. Boruvka and A.W. Neumann, Generalization of the classical theory of capillarity, J. Chem. Phys. 66: 5464–5476, 1977.

    Article  Google Scholar 

  15. R. Rosso and E. G. Virga, A generai stability criterion for wetting, Phys. Rev. E 68: 012601, 2003.

    Article  MathSciNet  Google Scholar 

  16. [16]—, Sign of line tension in liquid bridge stability, Phys. Rev. E 70: 031603, 2004.

    Article  MathSciNet  Google Scholar 

  17. B. Widom and A.S. Clarke, Line tension at the wetting transition, Physica A 168: 149–159, 1990.

    Article  MathSciNet  Google Scholar 

  18. I. Szleifer and B. Widom, Surface tension, line tension, and wetting, Mol. Phys. 75: 925–943, 1992.

    Article  Google Scholar 

  19. J.O. Indekeu, Line tension at wetting. Int. Journ. Mod. Phys. B 8: 309–345, 1994.

    Article  Google Scholar 

  20. R. Rosso and E. G. Virga, Local stability for a general wetting functional, J. Phys. A: Math. Gen. 37: 3989–4015, 2004. Corrigendum, ibid. 37: 8751, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  21. P.S. Swain and R. Lipowsky, Contact angles on heterogeneous substrates: a new look at Cassie’s and Wenzel’s laws, Langmuir 14: 6772–6780, 1998.

    Article  Google Scholar 

  22. R. Lipowsky, Structured surfaces and morphological wetting transitions. Interface Sci. 9: 105–115, 2001.

    Article  Google Scholar 

  23. C. Neinhuis and E. Barthlott, Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Botany-London 79: 667–677, 1998.

    Article  Google Scholar 

  24. S. Herminghaus, Roughness-induced non-wetting, Europhys. Lett. 52: 165–170, 2000.

    Article  Google Scholar 

  25. J. Bico, C. Tordeaux, and D. Queré, Rough wetting, Europhys. Lett. 55: 214–220, 2001.

    Article  Google Scholar 

  26. G. Mchale, N.A. Kab, M.I. Newton, and S.M. Rowan, Wetting of a highenergy fiber surface, J. Colloid Interface Sci. 186: 453–461, 1997.

    Article  Google Scholar 

  27. G. McHale and M.I. Newton, Global geometry and the equilibrium shapes of liquid drops on fibers, Colloids Surf. A 206: 79–86, 2002.

    Article  Google Scholar 

  28. C. Bauer, and S. Dietrich, Shapes, contact angles, and line tensions of droplets on cylinders, Phys. Rev. E 62: 2428–2438, 2000.

    Article  Google Scholar 

  29. R.C. Tolman, Consideration of the Gibbs theory of surface tension, J. Chem. Phys. 16: 758–774, 1948.

    Article  Google Scholar 

  30. P. Lenz and R. Lipowsky, Morphological transitions of wetting layers on structured surfaces, Phys. Rev. Lett. 80: 1920–1923, 1998.

    Article  Google Scholar 

  31. R. Lipowsky, P. Lenz, and P.S. Swain, Wetting and dewetting of structured and imprinted surfaces, Colloid Surface A 161: 3–22, 2000.

    Article  Google Scholar 

  32. A.I. Rusanov, Thermodynamics of solid surfaces. Surf. Sci. Rep. 23: 173–247, 1996.

    Article  Google Scholar 

  33. B.V. Toshev, D. Platikanov, and A. Schedulko, Line tension in three-phase equilibrium systems, Langmuir 14: 489–499, 1998.

    Google Scholar 

  34. A.I. Milchev and A.A. Milchev, Wetting behaviour of nanodroplets: the limits of Young’s rule validity, Europhys. Lett. 56: 695–701, 2001.

    Article  Google Scholar 

  35. R.D. Gretz, Line-tension effect in a surface energy model of a cap-shaped condensed phase, J. Chem. Phys. 45: 3160–3161, 1966.

    Article  Google Scholar 

  36. L. Guzzardi, R. Rosso, and E.G. Virga, Sessile droplets with negative line tension, To appear: 2005.

    Google Scholar 

  37. L. Guzzardi and R. RossoSessile droplets on a curved substrate: effects of line tension, To appear: 2005.

    Google Scholar 

  38. J. gaydos, Differential geometric theory of capillarity. Colloids Surf. A 114: 1–22, 1996.

    Article  Google Scholar 

  39. R. Finn, Equilibrium Capillary Surfaces, Springer, New York, 1986.

    MATH  Google Scholar 

  40. R.C. Tolman, The effect of droplet size on line tension, J. Chem. Phys. 17: 333–337, 1949.

    Article  Google Scholar 

  41. V.I. Kalikmanov, Statistical Physics of Fluids. Springer, Berlin, 2001.

    MATH  Google Scholar 

  42. P.P. Buff, The spherical interface I. Thermodynamics, J. Chem. Phys. 19: 1591–1594, 1951.

    Article  MathSciNet  Google Scholar 

  43. P.P. Buff, Curved fluid interfaces. I. The generalized Gibbs-Kelvin equation, J. Chem. Phys. 25: 146–153, 1956.

    Article  MathSciNet  Google Scholar 

  44. L. Boruvka, Y. Rotenberg, and A.W. Neumann, Hydrostatic approach to capillarity, J. Chem. Phys. 90: 125–127, 1986.

    Article  Google Scholar 

  45. M. Pasandideh-fard, P. Chen, J. Mostaghimi, and A.W. Neumann, The generalized Laplace equation of capillarity I. Thermodynamic and hydrostatic considerations of the fundamental equation for interfaces, Adv. Colloid Interface Sci. 63: 151–178, 1996.

    Article  Google Scholar 

  46. P. Chen, S.S. Susnar, M. Pasandideh-Fard, J. Mostaghimi, and A.W. Neumann, The generalized Laplace equation of capillarity II. Hydrostatic and themodynamics derivations of the Laplace equation for high curvatures, Adv. Colloid Interface Sci, 63: 179–193, 1996.

    Article  Google Scholar 

  47. R.H. Fowler, A tentative statistical theory of Macleod’s equation for surface tension, and the parachor, Proc. R. Soc. London A 159: 229–246, 1937.

    Google Scholar 

  48. J.G. Kirkwood and F.P. Buff, The statistical mechanical theory of surface tension, J. Chem. Phys. 17: 338–343, 1949.

    Article  Google Scholar 

  49. A.J.M. Yang, P. D. Fleming III, and J. H. Gibbs, Molecular theory of capillarity, J. Chem. Phys. 64: 3732–3747, 1976.

    Article  Google Scholar 

  50. P. Schofield and J.R. Henderson, Statistical mechanics of inhomogeneous fluids, Proc. R. SOC. London A 379: 231–246, 1982.

    Article  MATH  Google Scholar 

  51. J.D. Weeks, D. Chandler, and H.C. Andersen, Role of repulsive forces in determining the equilibrium structure of simple liquids, J. Chem. Phys. 54: 5237–5247, 1971.

    Article  Google Scholar 

  52. V.I. Kalikmanov and G.C.J. Hofmans, The perturbation approach to the statisticai theory of surface tension: new analytical results, J. Phys.: Condens. Matter 6:2207–2214, 1994.

    Article  Google Scholar 

  53. R. Evans, Microscopic theories of simple fluids and their interfaces. In Liquid at Interfaces, Proocedings of the Les Houches Summer School, Session XLVIII, J. Charvolin, J.F. Joanny, and J. Zinn-Justin, Editors: pp. 3–98, 1989.

    Google Scholar 

  54. R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids, Adv. Phys. 28: 143–200, 1979.

    Article  Google Scholar 

  55. F.F. Abraham, On the thermodynamics, structure and phase stability of the nonuniform fluid state, Phys. Rep. 53: 93–156, 1979.

    Article  MathSciNet  Google Scholar 

  56. L.M.C. Sagis and J.C. Slattery, Incorporation of line quantities in the continuum description for multiphase, multicomponent bodies with intersecting dividing surfaces. I. Kinematics and conservation principles, J. Colloid Interf. Sci. 176: 150–164, 1995.

    Article  Google Scholar 

  57. —, Incorporation of line quantities in the continuum description for multiphase, multicomponent bodies with intersecting dividing surfaces. II. Material behavior, J. Colloid Interf. Sci. 176: 165–172, 1995.

    Article  Google Scholar 

  58. —, Incorporation of line quantities in the continuum description for multiphase, multicomponent bodies with intersecting dividing surfaces. III. Determination of line tension and fluid-solid surface tensions using small sessile drops, J. Colloid Interf. Sci. 176: 173–182, 1995.

    Article  Google Scholar 

  59. B.D. Coleman and W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal. 13: 167–178, 1963.

    Article  MATH  MathSciNet  Google Scholar 

  60. F.P. Buff and H. Saltsburg, Curved fluid interfaces. II. The generalized Neumann formula, J. Chem. Phys. 26: 23–31, 1957.

    Article  MathSciNet  Google Scholar 

  61. J. Israelachvili, Intermolecular and Surface Forces, Academic Press, San Diego, 1992.

    Google Scholar 

  62. P.G. DE GENNES, Wetting: statics and dynamics, Rev. Mod. Phys. 57: 827–863, 1985.

    Article  Google Scholar 

  63. J.O. Indekeu and H.T. Dobbs, Line tension at wetting: finite-size effects and scaling functions, J. Phys. I France 4: 77–85, 1994.

    Article  Google Scholar 

  64. C. Bauer and S. Dietrich, Quantitative study of laterally inhomogeneous wetting films, Eur. Phys. J. B 10: 767–779, 1999.

    Article  Google Scholar 

  65. J.L. Barbosa and M.P. Do Carmo, On the size of a stable minimal surface in3, Amer. J. Math. 98: 515–527, 1974.

    Article  Google Scholar 

  66. —, Stability of hypersurfaces with constant mean curvature, Math. Z. 185: 339–353, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  67. K. Sekimoto, R. Oguma, and K. Kawasaki, Morphological stability analysis of partial wetting, Adv. Phys. 176: 359–392, 1987.

    Google Scholar 

  68. R.V. Roy and R.W. Schwartz, On the stability of liquid ridges, J. Fluid Mech. 391: 293–318, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  69. P. Lenz and R. Lipowsky, Stability of droplets and channels on homogeneous and structured surfaces, Eur. Phys. J. E 1: 249–262, 2000.

    Article  Google Scholar 

  70. A. Ros and R. Souam, On the stability of capillary surfaces in a ball, Pac. J. Math. 178: 345–361, 1997.

    MATH  MathSciNet  Google Scholar 

  71. H.C. Wente, The stability of the axially symmetric pendant drop, Pac. J. Math. 88: 421–470, 1980.

    MATH  MathSciNet  Google Scholar 

  72. T.I. Vogel, On constrained extrema, Pac. J. Math. 176: 457–561, 1996.

    Google Scholar 

  73. Sufficient conditions for multiply constrained extrema, Pac. J. Math. 180: 377–380, 1997.

    Google Scholar 

  74. Sufficient conditions for capillary surfaces to be energy minima, Pac. J. Math. 194: 469–489, 2000.

    Article  MATH  Google Scholar 

  75. I.M. Gelfand and S.V. Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, 1963.

    Google Scholar 

  76. R. Finn, Editorial comment on ‘On the stability of catenoidal liquid bridges’ by L. Zhou, Pac. J. Math. 178: 197–198, 1997.

    Google Scholar 

  77. M.A. Peterson, An instability in the red blood cell shape, J. Appl. Phys. 57: 1739–1742, 1985.

    Article  Google Scholar 

  78. Geometrical methods for the elasticity theory of membranes, J. Math. Phys. 26: 711–717, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  79. The factor (γ)−1 in fornt of ∂v f was absent from equation (3.16) of [20]. I am grateful to Dr. Guzzardi for pointing out this misprint.

    Google Scholar 

  80. R. Courant and D. Hilbert, Methods of Mathematical Physics vol. 1, Wiley-Interscience, New York, 1953.

    Google Scholar 

  81. A.J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 51: 481–587, 2002.

    Article  MathSciNet  Google Scholar 

  82. S. Rafaï, D. Bonn, E. Bertand, J. Meunier, V.C. Weiss, and J.O. Indekeu, Long-range critical wetting: observation of a critical end point, Phys. Rev. Lett. 92: 245701, 2004.

    Article  Google Scholar 

  83. A. Amirfazli, A. Keshvarz, L. Zhang, and A.W. Neumann, Determination of line tension for systems near wetting, J. Colloid Interf. Sci. 265: 152–160, 2003.

    Article  Google Scholar 

  84. D. Bonn and J.O. Indekeu, Nucleation and wetting near surface spinodals, Phys. Rev. Lett. 79: 3844–3847, 1995.

    Article  Google Scholar 

  85. R. Bausch and R. Blossey, Critical droplets on a wall near a first-order wetting transition, Phys. Rev. E 48: 1131–1135, 1993.

    Article  Google Scholar 

  86. J.O. Indekeu and D. Bonn, The role of surface spinodals in nucleation and wetting phenomena, Jour. Mol. Liq. 71: 163–173, 1997.

    Article  Google Scholar 

  87. C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers. Asymptotic Methods and Perturbation Theory, Springer, Heidelberg, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Rosso, R. (2005). Modelling Line Tension in Wetting. In: Calderer, MC.T., Terentjev, E.M. (eds) Modeling of Soft Matter. The IMA Volumes in Mathematics and its Applications, vol 141. Springer, New York, NY. https://doi.org/10.1007/0-387-32153-5_6

Download citation

Publish with us

Policies and ethics