Skip to main content

Mammalian Vestibular Hair Cells

  • Chapter
Vertebrate Hair Cells

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 27))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acuna D, Ishiyama A, Lopez IA (2004) Kir4.1 potassium channel subunit expression in the vestibular sensory epithelia of mice. Abstr Assoc Res Otolaryngol 27:1313.

    Google Scholar 

  • Adler HJ, Belyantseva IA, Merritt RC Jr, Frolenkov GI, Dougherty GW, Kachar B (2003) Expression of prestin, a membrane motor protein, in the mammalian auditory and vestibular periphery. Hear Res 184:27–40.

    PubMed  CAS  Google Scholar 

  • Ahmad M, Lysakowski A (2004) The synaptic ultrastructure of the adult mouse utricular macula. Abstr Assoc Res Otolaryngol 27:918.

    Google Scholar 

  • Almanza A, Vega R, Soto E (2003) Calcium current in type I hair cells isolated from the semicircular canal crista ampullaris of the rat. Brain Res 994:175–180.

    PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244.

    PubMed  CAS  Google Scholar 

  • Anderson AD, Troyanovskaya M, Wackym PA (1997) Differential expression of alpha2-7, alpha9 and beta2-4 nicotinic acetylcholine receptor subunit mRNA in the vestibular end-organs and Scarpa’s ganglia of the rat. Brain Res 778:409–413.

    PubMed  CAS  Google Scholar 

  • Andrianov GN, Ryzhova IV (1999) Opioid peptides as possible neuromodulators of the afferent synaptic transmission in the frog semicircular canal. Neuroscience 93:801–806.

    PubMed  CAS  Google Scholar 

  • Angelaki DE (1998) Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses to translation. J Neurophysiol 80:680–695.

    PubMed  CAS  Google Scholar 

  • Annoni J-M, Cochran SL, Precht W (1984) Pharmacology of the vestibular hair cell-afferent fiber synapse in the frog. J Neurosci 4:2106–2116.

    PubMed  CAS  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R, Fuchs PA (1985) Efferent modulation of hair cell tuning in the cochlea of the turtle. J Physiol 360:397–421.

    PubMed  CAS  Google Scholar 

  • Ashmore JF, Attwell D (1985) Models for electrical tuning in hair cells. Proc R Soc Lond B 226:325–344.

    Google Scholar 

  • Assad JA, Corey DP (1992) An active motor model for adaptation by vertebrate hair cells. J Neurosci 12:3291–3309.

    PubMed  CAS  Google Scholar 

  • Assad JA, Shepherd GMG, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994.

    PubMed  CAS  Google Scholar 

  • Bagger-Sjöbäck D, Takumida M (1988) Geometrical array of the vestibular sensory hair bundle. Acta Otolaryngol (Stockh) 106:393–403.

    PubMed  Google Scholar 

  • Bailey GP, Sewell WF (2000) Calcitonin gene-related peptide suppresses hair cell responses to mechanical stimulation in the Xenopus lateral line organ. J Neurosci 20: 5163–5169.

    PubMed  CAS  Google Scholar 

  • Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308.

    PubMed  CAS  Google Scholar 

  • Baird RA (1992) Morphological and electrophysiological properties of hair cells in the bullfrog utriculus. Ann N Y Acad Sci 656:12–26.

    PubMed  CAS  Google Scholar 

  • Baird RA (1994a) Comparative transduction mechanisms of hair cells in the bullfrog utriculus. I. Responses to intracellular current. J Neurophysiol 71:685–705.

    PubMed  CAS  Google Scholar 

  • Baird RA (1994b) Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement. J Neurophysiol 71:685–705.

    PubMed  CAS  Google Scholar 

  • Baird RA, Lewis ER (1986) Correspondences between afferent innervation patterns and response dynamics in the bullfrog utricle and lagena. Brain Res 369:48–64.

    PubMed  CAS  Google Scholar 

  • Baird RA, Schuff NR (1994) Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus. J Comp Neurol 342:279–298.

    PubMed  CAS  Google Scholar 

  • Baird RA, Desmadryl G, Fernández C, Goldberg JM (1988) The vestibular nerve of the chinchilla. II. Relation between afferent response properties and peripheral innervation patterns in the semicircular canals. J Neurophysiol 60:182–203.

    PubMed  CAS  Google Scholar 

  • Baird RA, Steyger PS, Schuff NR (1997) Intracellular distributions and putative functions of calcium-binding proteins in the bullfrog vestibular otolith organs. Hearing Res 103:85–100.

    CAS  Google Scholar 

  • Bao H, Wong WH, Goldberg JM, Eatock RA (2003) Voltage-gated calcium channel currents in type I and type II hair cells isolated from the rat crista. J Neurophysiol 90:155–164.

    PubMed  CAS  Google Scholar 

  • Barmack NH (2003) Central vestibular system: vestibular nuclei and posterior cerebellum. Brain Res Bull 60:511–541.

    PubMed  Google Scholar 

  • Behrend O, Schwark C, Kunihiro T, Strupp M (1997) Cyclic GMP inhibits and shifts the activation curve of the delayed-rectifier (IK1) of type I mammalian vestibular hair cells. NeuroReport 8:2687–2690.

    PubMed  CAS  Google Scholar 

  • Benser ME, Issa NP, Hudspeth AJ (1993) Hair-bundle stiffness dominates the elastic reactance to otolithic-membrane shear. Hear Res 68:243–252.

    PubMed  CAS  Google Scholar 

  • Bergstrom RA, You Y, Erway LC, Lyon MF, Schimenti JC (1998) Deletion mapping of the head tilt (het) gene in mice: a vestibular mutation causing specific absence of otoliths. Genetics 150:815–822.

    PubMed  CAS  Google Scholar 

  • Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599.

    PubMed  CAS  Google Scholar 

  • Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol. 275:F633–650.

    PubMed  CAS  Google Scholar 

  • Boyer C, Sans A, Vautrin J, Chabbert C, Lehouelleur J (1999) K+-dependence on Na+-Ca2+ exchange in type I vestibular sensory cells of guinea-pig. Eur J Neurosci 11:1955–1959.

    PubMed  CAS  Google Scholar 

  • Boyer C, Art JJ, Dechesne CJ, Lehouelleur J, Vautrin J, Sans A (2001) Contribution of the plasmalemma to Ca2+ homeostasis in hair cells. J Neurosci 21:2640–2650.

    PubMed  CAS  Google Scholar 

  • Boyle R, Highstein SM (1990) Resting discharge and response dynamics of horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurosci 10:1557–1569.

    PubMed  CAS  Google Scholar 

  • Boyle R, Carey JP, Highstein SM (1991) Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurophysiol 66:1504–1521.

    PubMed  CAS  Google Scholar 

  • Brändle U, Zenner HP, Ruppersberg JP (1999) Gene expression of P2X-receptors in the developing inner ear of the rat. Neurosci Lett 273:105–108.

    PubMed  Google Scholar 

  • Brandt A, Striessnig J, Moser T (2003) CaV1.3 channels are essential for development and presynaptic activity of cochlear inner hair cells. J Neurosci 23:10832–10840.

    PubMed  CAS  Google Scholar 

  • Brichta AM, Goldberg JM (2000) Responses to efferent activation and excitatory response-intensity relations of turtle posterior-crista afferents. J Neurophysiol 83:1224–1242.

    PubMed  CAS  Google Scholar 

  • Brichta AM, Aubert A, Eatock RA, Goldberg JM (2002) Regional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol 88:3259–3278.

    PubMed  Google Scholar 

  • Brown MC, Nuttall AL (1984) Efferent control of cochlear inner hair cell responses in the guinea-pig. J Physiol 354:625–46.

    PubMed  CAS  Google Scholar 

  • Cameron P, Modi D, Price SD, Lysakowski A (2004) Multiple isoforms of the ryanodine and IP3 receptors are expressed in rat inner ear ganglia and endorgans. Abstr Assoc Res Otolaryngol 27:633.

    Google Scholar 

  • Chabbert C, Canitrot Y, Sans A, Lehouelleur J (1995) Calcium homeostasis in guinea pig type-I vestibular hair cell: possible involvement of an Na+-Ca2+ exchanger. Hear Res 89:101–108.

    PubMed  CAS  Google Scholar 

  • Chabbert C, Chambard JM, Sans A, Desmadryl G (2001) Three types of depolarization-activated potassium currents in acutely isolated mouse vestibular neurons. J Neurophysiol 85:1017–1026.

    PubMed  CAS  Google Scholar 

  • Chabbert C, Mechaly I, Sieso V, Giraud P, Brugeaud A, Lehouelleur J, Couraud F, Valmier J, Sans A (2003) Voltage-gated Na+ channel activation induces both action potentials in utricular hair cells and brain-derived neurotrophic factor release in the rat utricle during a restricted period of development. J Physiol 553:113–123.

    PubMed  CAS  Google Scholar 

  • Chang JS, Popper AN, Saidel WM (1992) Heterogeneity of sensory hair cells in a fish ear. J Comp Neurol 324:621–640.

    PubMed  CAS  Google Scholar 

  • Chen JWY, Eatock RA (2000) Major potassium conductance in type I hair cells from rat semicircular canals: characterization and modulation by nitric oxide. J Neurophysiol 84:139–151.

    PubMed  CAS  Google Scholar 

  • Cho WJ, Drescher MJ, Hatfield JS, Bessert DA, Skoff RP, Drescher DG (2003) Hyperpolarization-activated, cyclic AMP-gated, HCN1-like cation channel: the primary, full-length HCN isoform expressed in a saccular hair-cell layer. Neuroscience 118:525–534.

    PubMed  CAS  Google Scholar 

  • Ciorba MA, Heinemann SH, Weissbach H, Brot N, Hoshi T (1999) Regulation of voltage-dependent K+ channels by methionine oxidation: effect of nitric oxide and vitamin C. FEBS Lett 442:48–52.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983a) Analysis of the microphonic potential of the bullfrog’s sacculus. J Neurosci 3:942–961.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983b) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976.

    PubMed  CAS  Google Scholar 

  • Corey DP, Sotomayor M (2004) Hearing: tightrope act. Nature 428:901–903.

    PubMed  CAS  Google Scholar 

  • Correia MJ, Lang DG (1990) An electrophysiological comparison of solitary type I and type II vestibular hair cells. Neurosci Lett 116:106–111.

    PubMed  CAS  Google Scholar 

  • Correia MJ, Christensen BN, Moore LE, Lang DG (1989) Studies of solitary semicircular canal hair cells in the adult pigeon. I. Frequency-and time-domain analysis of active and passive membrane properties. J Neurophysiol 62:924–945.

    PubMed  CAS  Google Scholar 

  • Correia MJ, Ricci AJ, Rennie KJ (1996) Filtering properties of vestibular hair cells: an update. Ann NY Acad Sci 781:138–149.

    PubMed  CAS  Google Scholar 

  • Correia MJ, Rennie KJ, Koo P (2001) Return of potassium ion channels in regenerated hair cells: possible pathways and the role of intracellular calcium signaling. Ann N Y Acad Sci 942:228–240.

    PubMed  CAS  Google Scholar 

  • Correia MJ, Wood TG, Prusak D, Weng T, Rennie KJ, Wang HQ (2004) Molecular characterization of an inward rectifier channel (IKir) found in avian vestibular hair cells: cloning and expression of pKir2.1. Physiol Genom 19:155–169.

    CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1991) The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J Physiol 434:369–398.

    PubMed  CAS  Google Scholar 

  • Cullen KE, Minor LB (2002) Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for the role of vestibular efference. J Neurosci 22:RC226.

    PubMed  Google Scholar 

  • Curthoys IS (1983) The development of function of primary vestibular neurons. In: Romand R (ed), Development of Auditory and Vestibular Systems New York: Academic Press, pp. 425–461.

    Google Scholar 

  • Cyr JL, Dumont RA, Gillespie PG (2002) Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains. J Neurosci 22:2487–2495.

    PubMed  CAS  Google Scholar 

  • Dailey SH, Wackym PA, Brichta AM, Gannon PJ, Popper P (2000) Topographic distribution of nicotinic acetylcholine receptors in the cristae of a turtle. Hear Res 141:51–56.

    PubMed  CAS  Google Scholar 

  • Dechesne CJ, Thomasset M (1988) Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear. Brain Res 468:233–242.

    PubMed  CAS  Google Scholar 

  • Dechesne CJ, Thomasset M, Brehier A, Sans A (1988) Calbindin (CaBP 28 kDa) localization in the peripheral vestibular system of various vertebrates. Hear Res 33:273–278.

    PubMed  CAS  Google Scholar 

  • Dechesne CJ, Winsky L, Kim HN, Goping G, Vu TD, Wenthold RJ, Jacobowitz DM (1991) Identification and ultrastructural localization of a calretinin-like calcium-binding protein (protein 10) in the guinea pig and rat inner ear. Brain Res 560:139–148.

    PubMed  CAS  Google Scholar 

  • Dechesne CJ, Kauff C, Stettler O, Tavitian B (1997) Rab3A immunolocalization in the mammalian vestibular end-organs during development and comparison with synaptophysin expression. Brain Res Dev Brain Res 99:103–111.

    PubMed  CAS  Google Scholar 

  • Demêmes D, Wenthold RJ, Moniot B, Sans A (1990) Glutamate-like immunoreactivity in the peripheral vestibular system of mammals. Hear Res 46:261–269.

    PubMed  Google Scholar 

  • Demêmes D, Eybalin M, Renard N (1993) Cellular distribution of parvalbumin immunoreactivity in the peripheral vestibular system of three rodents. Cell Tissue Res 274:487–492.

    PubMed  Google Scholar 

  • Demêmes D, Lleixa A, Dechesne CJ (1995) Cellular and subcellular localization of AMPA-selective glutamate receptors in the mammalian peripheral vestibular system. Brain Res 671:83–94.

    PubMed  Google Scholar 

  • Denman-Johnson K, Forge A (1999) Establishment of hair bundle polarity and orientation in the developing vestibular system of the mouse. J Neurocytol 28:821–835.

    PubMed  CAS  Google Scholar 

  • Desai SS, Dhaliwal J, Lysakowski A (2004) NOS immunochemical staining in calyces in chinchilla vestibular endorgans. Abstr Assoc Res Otolaryngol 27:853.

    Google Scholar 

  • Desai SS, Ali H, Lysakowski A (2005a) Comparative morphology of the rodent vestibular periphery: II. Cristae ampullares. J Neurophysiol 93:267–280.

    PubMed  Google Scholar 

  • Desai SS, Zeh C, Lysakowski A (2005b) Comparative morphology of the rodent vestibular periphery: I. Saccular and utricular maculae. J Neurophysiol 93:251–266.

    PubMed  Google Scholar 

  • Desmadryl G, Dechesne CJ (1992) Calretinin immunoreactivity in chinchilla and guinea pig vestibular end organs characterizes the calyx unit subpopulation. Exp Brain Res 89:105–108.

    PubMed  CAS  Google Scholar 

  • Desmadryl G, Sans A (1990) Afferent innervation patterns in crista ampullaris of the mouse during ontogenesis. Brain Res Dev Brain Res 52:183–189.

    PubMed  CAS  Google Scholar 

  • Devau G, Lehouelleur J, Sans A (1993) Glutamate receptors on type I vestibular hair cells of guinea-pig. Eur J Neurosci 5:1210–1217.

    PubMed  CAS  Google Scholar 

  • De Vries HL (1950) Mechanics of the labyrinth organs. Acta Otolaryngol 38:262–273.

    Google Scholar 

  • Dickman JD, Correia MJ (1989) Responses of pigeon horizontal semicircular canal afferent fibers. II. High-frequency mechanical stimulation. J Neurophysiol 62:1102–1112.

    PubMed  CAS  Google Scholar 

  • Didier A, Dupont J, Cazals Y (1990) GABA immunoreactivity of calyceal nerve endings in the vestibular system of the guinea pig. Cell Tissue Res 260:415–419.

    PubMed  CAS  Google Scholar 

  • Dohlman G, Farkashidy J, Salonna F (1958) Centrifugal nerve-fibres to the sensory epithelium of the vestibular labyrinth. J Laryngol Otol 72:984–991.

    PubMed  CAS  Google Scholar 

  • Dou H, Vazquez AE, Namkung Y, Chu H, Cardell EL, Nie L, Parson S, Shin HS, Yamoah EN (2004) Null mutation of α1D Ca2+ channel gene results in deafness but no vestibular defect in mice. J Assoc Res Otolaryngol 5:215–226.

    PubMed  Google Scholar 

  • Drescher MJ, Kern RC, Hatfield JS, Drescher DG (1995) Cytochemical localization of adenylyl cyclase activity within the sensory epithelium of the trout saccule. Neurosci Lett 196:145–148.

    PubMed  CAS  Google Scholar 

  • Drescher DG, Kerr TP, Drescher MJ (1999) Autoradiographic demonstration of quinuclidinyl benzilate binding sites in the vestibular organs of the gerbil. Brain Res 845:199–207.

    PubMed  CAS  Google Scholar 

  • Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078.

    PubMed  CAS  Google Scholar 

  • Eatock RA (2000) Adaptation in hair cells. Annu Rev Neurosci 23:285–314.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Hurley KM (2003) Functional development of hair cells. In: Romand R, Varela-Nieto I (eds), Development of the Auditory and Vestibular Systems 3: Molecular Development of the Inner Ear. San Diego: Academic Press, pp. 389–448.

    Google Scholar 

  • Eatock RA, Hutzler MJ (1992) Ionic currents in mammalian vestibular hair cells. Ann NY Acad Sci 656:58–74.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 7:2821–2836.

    PubMed  CAS  Google Scholar 

  • Eatock RA, Chen W-Y, Saeki M (1994) Potassium currents in mammalian vestibular hair cells. Sensory Systems 8:21–28.

    Google Scholar 

  • Eatock RA, Hurley KM, Vollrath MA (2002) Mechanoelectrical and voltage-gated ion channels in mammalian vestibular hair cells. Audiol Neurootol 7:31–35.

    PubMed  CAS  Google Scholar 

  • Edmonds B, Reyes R, Schwaller B, Roberts WM (2000) Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 3:786–790.

    PubMed  CAS  Google Scholar 

  • Eybalin M (1993) Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev 73:309–373.

    PubMed  CAS  Google Scholar 

  • Faber ES, Sah P (2003) Calcium-activated potassium channels: multiple contributions to neuronal function. Neuroscientist 9:181–194.

    PubMed  CAS  Google Scholar 

  • Favre D, Sans A (1979) Morphological changes in afferent vestibular hair cell synapses during the postnatal development of the cat. J Neurocytol 8:765–775.

    PubMed  CAS  Google Scholar 

  • Favre D, Sans A (1983) Organization and density of microtubules in the vestibular sensory cells in the cat. Acta Otolaryngol 96:15–20.

    PubMed  CAS  Google Scholar 

  • Fermin CD, Lychakov D, Campos A, Hara H, Sondag E, Jones T, Jones S, Taylor M, Meza-Ruiz G, Martin DS (1998) Otoconia biogenesis, phylogeny, composition and functional attributes. Histol Histopathol 13:1103–1154.

    PubMed  CAS  Google Scholar 

  • Fernández C, Baird RA, Goldberg JM (1988) The vestibular nerve of the chinchilla. I. Peripheral innervation patterns in the horizontal and superior semicircular canals. J Neurophysiol 60:167–181.

    PubMed  Google Scholar 

  • Fernández C, Goldberg JM, Baird RA (1990) The vestibular nerve of the chinchilla. III. Peripheral innervation patterns in the utricular macula. J Neurophysiol 63:767–780.

    PubMed  Google Scholar 

  • Fernández C, Lysakowski A, Goldberg JM (1995) Hair-cell counts and afferent innervation patterns in the cristae ampullares of the squirrel monkey with a comparison to the chinchilla. J Neurophysiol 73:1253–1281.

    PubMed  Google Scholar 

  • Fettiplace R, Ricci AJ, Hackney CM (2001) Clues to the cochlear amplifier from the turtle ear. Trends Neurosci 24:169–175.

    PubMed  CAS  Google Scholar 

  • Flock Å (1971) Sensory transduction in hair cells. In: Loewenstein WR (ed), Handbook of Sensory Physiology, Vol. 1. Berlin: Springer-Verlag, pp. 396–441.

    Google Scholar 

  • Flores A, León-Olea M, Vega R, Soto E (1996) Histochemistry and role of nitric oxide synthase in the amphibian (Ambystoma tigrinum) inner ear. Neurosci Lett 205:131–134.

    PubMed  CAS  Google Scholar 

  • Fontilla MF, Peterson EH (2000) Kinocilia heights on utricular hair cells. Hear Res 145:8–16.

    PubMed  CAS  Google Scholar 

  • Foster JD, Drescher MJ, Hatfield JS, Drescher DG (1994) Immunohistochemical localization of S-100 protein in auditory and vestibular end organs of the mouse and hamster. Hear Res 74:67–76.

    PubMed  CAS  Google Scholar 

  • Foster JD, Drescher MJ, Drescher DG (1995) Immunohistochemical localization of GABAA receptors in the mammalian crista ampullaris. Hear Res 83:203–208.

    PubMed  CAS  Google Scholar 

  • Freeman DM, Weiss TF (1988) The role of fluid inertia in mechanical stimulation of hair cells. Hear Res 35:201–207.

    PubMed  CAS  Google Scholar 

  • Furness DN, Lawton DM (2003) Comparative distribution of glutamate transporters and receptors in relation to afferent innervation density in the mammalian cochlea. J Neurosci 23:11296–11304.

    PubMed  CAS  Google Scholar 

  • Furukawa T, Ishii Y, Matsuura S (1972) Synaptic delay and time course of postsynaptic potentials at the junction between hair cells and eighth nerve fibers in the goldfish. Jpn J Physiol 22:617–635.

    PubMed  CAS  Google Scholar 

  • Gacek RR, Lyon M (1974) The localization of vestibular efferent neurons in the kitten with horseradish peroxidase. Acta Otolaryngol 77:92–101.

    PubMed  CAS  Google Scholar 

  • Gacek RR, Rasmussen GL (1961) Fiber analysis of the statoacoustic nerve of guinea pig, cat, and monkey. Anat Rec 139:455–463.

    PubMed  CAS  Google Scholar 

  • Ganitkevich VY (2003) The role of mitochondria in cytoplasmic Ca2+ cycling. Exp Physiol 88:91–97.

    PubMed  CAS  Google Scholar 

  • Garthwaite J, Boulton CL (1995) Nitric oxide signaling in the central nervous system. Annu Rev Physiol 57:683–706.

    PubMed  CAS  Google Scholar 

  • Géléoc GS, Holt JR (2003) Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nat Neurosci 6:1019–1020.

    PubMed  Google Scholar 

  • Géléoc GS, Lennan GWT, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc R Soc Lond B 264:611–621.

    Google Scholar 

  • Géléoc GS, Risner JR, Holt JR (2004) Developmental acquisition of voltage-dependent conductances and sensory signaling in hair cells of the embryonic mouse inner ear. J Neurosci 24:11148–11159.

    PubMed  Google Scholar 

  • Goldberg JM (1996) A theoretical analysis of intercellular communication between the vestibular type I hair cell and its calyx ending. J Neurophysiol 76:1942–1957.

    PubMed  CAS  Google Scholar 

  • Goldberg JM (2000) Afferent diversity and the organization of central vestibular pathways. Exp Brain Res 130:277–297.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brichta AM (2002) Functional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol 88:3279–3292.

    PubMed  Google Scholar 

  • Goldberg JM, Fernández C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Smith CE, Fernández C (1984) Relation between discharge regularity and responses to externally applied galvanic currents in vestibular nerve afferents of the squirrel monkey. J Neurophysiol 51:1236–1256.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990a) The vestibular nerve of the chinchilla. IV. Discharge properties of utricular afferents. J Neurophysiol 63:781–790.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Desmadryl G, Baird RA, Fernández C (1990b) The vestibular nerve of the chinchilla. V. Relation between afferent discharge properties and peripheral innervation patterns in the utricular macula. J Neurophysiol 63:791–804.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Lysakowski A, Fernández C (1992) Structure and function of vestibular nerve fibers in the chinchilla and squirrel monkey. Ann NY Acad Sci 656:92–107.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brichta AM, Wackym PA (2000) Efferent vestibular system: Anatomy, physiology and neurochemistry. In: Beitz AJ, Anderson JH (eds), Neurochemistry of the Vestibular System. Boca Raton: CRC Press, pp. 61–94.

    Google Scholar 

  • Goodyear R, Richardson G (1999) The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J Neurosci 19:3761–3772.

    PubMed  CAS  Google Scholar 

  • Goodyear RJ, Richardson GP (2002) Extracellular matrices associated with the apical surfaces of sensory epithelia in the inner ear: molecular and structural diversity. J Neurobiol 53:212–227.

    PubMed  CAS  Google Scholar 

  • Grant JW, Huang CC, Cotton JR (1994) Theoretical mechanical frequency response of the otolithic organs. J Vestib Res 4:137–151.

    PubMed  CAS  Google Scholar 

  • Grossman GE, Leigh RJ, Abel LA, Lanska DJ, Thurston SE (1988) Frequency and velocity of rotational head perturbations during locomotion. Exp Brain Res 70:470–476.

    PubMed  CAS  Google Scholar 

  • Gulley RL, Bagger-Sjöböck D (1979) Freeze-fracture studies on the synapse between the type I hair cell and the calyceal terminal in the guinea-pig vestibular system. J Neurocytol 8:591–603.

    PubMed  CAS  Google Scholar 

  • Guth SM, Price SD, Luebke A, Lysakowski A (1999) Alpha-9 nicotinic acetylcholine receptor is not found on the peripherin-labelled (bouton) class of afferents in the vestibular ganglion of the chinchilla. Abstr Assoc Res Otolaryngol 22: 186–187.

    Google Scholar 

  • Hackney CM, Mahendrasingam S, Jones EM, Fettiplace R (2003) The distribution of calcium buffering proteins in the turtle cochlea. J Neurosci 23:4577–4589.

    PubMed  CAS  Google Scholar 

  • Hamilton DW (1968) The calyceal synapse of type I vestibular hair cells. J Ultrastruct Res 23:98–114.

    PubMed  CAS  Google Scholar 

  • Heller S, Bell AM, Denis CS, Choe Y, Hudspeth AJ (2002) Parvalbumin 3 is an abundant Ca2+ buffer in hair cells. J Assoc Res Otolaryngol 3:488–498.

    PubMed  Google Scholar 

  • Hess K (1996) Vestibulotoxic drugs and other causes of acquired bilateral peripheral vestibulopathy. In: Baloh RW, Halmagyi GM (eds), Disorders of the Vestibular System. New York: Oxford University Press, pp. 360–373.

    Google Scholar 

  • Hiel H, Elgoyhen AB, Drescher DG, Morley BJ (1996) Expression of nicotinic acetylcholine receptor mRNA in the adult rat peripheral vestibular system. Brain Res 738: 347–352.

    PubMed  CAS  Google Scholar 

  • Highstein SM (1992) The efferent control of the organs of balance and equilibrium in the toadfish, Opsanus tau. Ann NY Acad Sci 656:108–123.

    PubMed  CAS  Google Scholar 

  • Highstein SM (1996) How does the vestibular part of the inner ear work? In: Baloh RW, Halmagyi GM (eds), Disorders of the Vestibular System. New York: Oxford University Press, pp. 3–19.

    Google Scholar 

  • Highstein SM, Rabbitt RD, Boyle R (1996) Determinants of semicircular canal afferent response dynamics in the toadfish, Opsanus tau. J Neurophysiol 75:575–596.

    PubMed  CAS  Google Scholar 

  • Hilding D, Wersäll J (1962) Cholinesterase and its relation to the nerve endings in the inner ear. Acta Otolaryngol 55:205–217.

    PubMed  CAS  Google Scholar 

  • Hille B (2001) Ion Channels of Excitable Membranes. Sunderland, MA: Sinauer.

    Google Scholar 

  • Holt JC, Xue J-T, Goldberg JM (2002) A cellular and pharmacological analysis of the responses of turtle posterior crista afferents to efferent activation. Abstr Assoc Res Otolaryngol 25:480.

    Google Scholar 

  • Holt JC, Xue J-T, Goldberg JM (2004) Afferent responses to efferent activation in the turtle posterior canal involve pharmacologically-distinct nicotinic receptors. Abstr Assoc Res Otolaryngol 27:629.

    Google Scholar 

  • Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17:8739–8748.

    PubMed  CAS  Google Scholar 

  • Holt JR, Vollrath MA, Eatock RA (1999) Stimulus processing by type II hair cells in the mouse utricle. Ann NY Acad Sci 871:15–26.

    PubMed  CAS  Google Scholar 

  • Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108:371–381.

    PubMed  CAS  Google Scholar 

  • Holt JR, Abraham D, Géléoc GS (2004) Adenoviral-mediated dominant-negative suppression of a low-voltage-activated potassium conductance in type I vestibular hair cells. Abstr Assoc Res Otolaryngol 27:153.

    Google Scholar 

  • Honrubia V, Hoffman LF, Sitko S, Schwartz IR (1989) Anatomic and physiological correlates in bullfrog vestibular nerve. J Neurophysiol 61:688–701.

    PubMed  CAS  Google Scholar 

  • Housley GD, Ryan AF (1997) Cholinergic and purinergic neurohumoral signalling in the inner ear: a molecular physiological analysis. Audiol Neurootol 2:92–110.

    PubMed  CAS  Google Scholar 

  • Housley GD, Greenwood D, Ashmore JF (1992) Localization of cholinergic and purinergic receptors on outer hair cells isolated from the guinea-pig cochlea. Proc R Soc Lond B Biol Sci 249:265–273.

    CAS  Google Scholar 

  • Housley GD, Kanjhan R, Raybould NP, Greenwood D, Salih SG, Jarlebark L, Burton LD, Setz VC, Cannell MB, Soeller C, Christie DL, Usami S, Matsubara A, Yoshie H, Ryan AF, Thorne PR (1999) Expression of the P2X(2) receptor subunit of the ATPgated ion channel in the cochlea: implications for sound transduction and auditory neurotransmission. J Neurosci 19:8377–8388.

    PubMed  CAS  Google Scholar 

  • Howard J, Bechstedt S (2004) Hypothesis: a helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Curr Biol 14: R224–R226.

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog’s saccular hair cell. Proc Natl Acad Sci USA 84:3064–3068.

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AJ (1988) Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199.

    PubMed  CAS  Google Scholar 

  • Hozawa J, Fukuoka K, Usami S, Ikeno K, Fukushi E, Shinkawa H, Hozawa K (1991) The mechanism of irritative nystagmus and paralytic nystagmus. A histochemical study of the guinea pig’s vestibular organ and an autoradiographic study of the vestibular nuclei. Acta Otolaryngol Suppl 481:73–76.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Gillespie PG (1994) Pulling springs to tune transduction: adaptation by hair cells. Neuron 12:1–9.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772.

    PubMed  CAS  Google Scholar 

  • Hullar TE, Minor LB (1999) High-frequency dynamics of regularly discharging canal afferents provide a linear signal for angular vestibuloocular reflexes. J Neurophysiol 82:2000–2005.

    PubMed  CAS  Google Scholar 

  • Hullar TE, Della Santina CC, Hirvonen TP, Lasker DM, Carey JP, Minor LB (2004) Responses of irregularly discharging chinchilla semicircular canal vestibular-nerve afferents during high-frequency head rotations. J Neurophysiol [Epub ahead of print] adoi:10.1152/jn.01002.2004

    Google Scholar 

  • Hunter-Duvar IM, Hinojosa R (1984) Vestibule: Sensory epithelia. In: Friedmann I, Ballantyne J (eds), Ultrastructural Atlas of the Inner Ear. London: Butterworths, pp. 211–244.

    Google Scholar 

  • Hurle B, Ignatova E, Massironi SM, Mashimo T, Rios X, Thalmann I, Thalmann R, Ornitz DM (2003) Non-syndromic vestibular disorder with otoconial agenesis in tilted/mergulhador mice caused by mutations in otopetrin 1. Hum Mol Genet 12:777–789.

    PubMed  CAS  Google Scholar 

  • Ichimiya I, Adams JC, Kimura RS (1994) Immunolocalization of Na+, K+-ATPase, Ca++-ATPase, calcium-binding proteins, and carbonic anhydrase in the guinea pig inner ear. Acta Otolaryngol 114:167–176.

    PubMed  CAS  Google Scholar 

  • Igarashi M (1966) Architecture of the otolith end organ: some functional considerations. Ann Otol Rhinol Laryngol 75:945–955.

    PubMed  CAS  Google Scholar 

  • Ishiyama A, Lopez I, Wackym PA (1994) Choline acetyltransferase immunoreactivity in the human vestibular end-organs. Cell Biol Int 18:979–984.

    PubMed  CAS  Google Scholar 

  • Ishiyama A, Lopez I, Wackym PA (1995) Distribution of efferent cholinergic terminals and alpha-bungarotoxin binding to putative nicotinic acetylcholine receptors in the human vestibular end-organs. Laryngoscope 105:1167–1172.

    PubMed  CAS  Google Scholar 

  • Ishiyama G, Lopez I, Williamson R, Acuna DL, Ishiyama A (2002) Subcellular immunolocalization of NMDA receptor subunit NR1, 2A, 2B in the rat vestibular periphery. Brain Res 935:16–23.

    PubMed  CAS  Google Scholar 

  • Iurato S, Taidelli G (1964) Relationships and structure of the so-called “much granulated endings” in the crista ampullaris (as studied by means of serial sections). In: Third European Regional Conference on Electron Microscopy, Publishing House of the Czechoslovak Academy of Sciences, Prague, Czechoslovakia, pp. 325–326.

    Google Scholar 

  • Iurato S, Luciano L, Pannese E, Reale E (1972) Efferent vestibular fibers in mammals: morphological and histochemical aspects. Prog Brain Res 37:429–443.

    PubMed  CAS  Google Scholar 

  • Jacobs RA, Hudspeth AJ (1990) Ultrastructural correlates of mechanoelectrical transduction in hair cells of the bullfrog’s internal ear. CSH Symp Quant Biol LV:547–561.

    Google Scholar 

  • Jaeger R, Takagi A, Haslwanter T (2002) Modeling the relation between head orientations and otolith responses in humans. Hear Res 173:29–42.

    PubMed  CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7: 409–420.

    PubMed  CAS  Google Scholar 

  • Jarlebark LE, Housley GD, Raybould NP, Vlajkovic S, Thorne PR (2002) ATP-gated ion channels assembled from P2X2 receptor subunits in the mouse cochlea. NeuroReport 13:1979–1984.

    PubMed  Google Scholar 

  • Jones SM, Erway LC, Bergstrom RA, Schimenti JC, Jones TA (1999) Vestibular responses to linear acceleration are absent in otoconia-deficient C57BL/6JEi-het mice. Hear Res 135:56–60.

    PubMed  CAS  Google Scholar 

  • Jørgensen F, Kroese AB (1995) Ca selectivity of the transduction channels in the hair cells of the frog sacculus. Acta Physiol Scand 155:363–376.

    PubMed  Google Scholar 

  • Jørgensen JM (1988) The number and distribution of calyceal hair cells in the inner ear utricular macula of some reptiles. Acta Zool (Stockh) 69:169–175.

    Google Scholar 

  • Jørgensen JM (1989) Number and distribution of hair cells in the utricular macula of some avian species. J Morphol 201:187–204.

    Google Scholar 

  • Kachar B, Parakkal M, Fex J (1990) Structural basis for mechanical transduction in the frog vestibular sensory apparatus: I. The otolithic membrane. Hear Res 45:179–190.

    PubMed  CAS  Google Scholar 

  • Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci USA 97:13336–13341.

    PubMed  CAS  Google Scholar 

  • Kataoka Y, Ohmori H (1994) Activation of glutamate receptors in response to membrane depolarization of hair cells isolated from chick cochlea. J Physiol 477:403–414.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Meech RW (2002) Fast Ca2+ signals at mouse inner hair cell synapse: a role for Ca2+-induced Ca2+ release. J Physiol 539:15–23.

    PubMed  CAS  Google Scholar 

  • Kennedy HJ, Evans MG, Crawford AC, Fettiplace R (2003) Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat Neurosci 6:832–836.

    PubMed  CAS  Google Scholar 

  • Kevetter GA, Leonard RB (2002) Molecular probes of the vestibular nerve. II. Characterization of neurons in Scarpa’s ganglion to determine separate populations within the nerve. Brain Res 928:18–29.

    PubMed  CAS  Google Scholar 

  • Kharkovets T, Hardelin JP, Safieddine S, Schweizer M, El Amraoui A, Petit C, Jentsch TJ (2000) KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci USA 97:4333–4338.

    PubMed  CAS  Google Scholar 

  • Kikuchi T, Takasaka T, Tonosaki A, Watanabe H, Hozawa K, Shinkawa H, Wada H. (1991) Microtubule subunits of guinea pig vestibular epithelial cells. Acta Otolaryngol Suppl 481:107–111.

    PubMed  CAS  Google Scholar 

  • Kollmar R, Montgomery LG, Fak J, Henry LJ, Hudspeth AJ (1997) Predominance of the α1D subunit in L-type voltage-gated Ca2+ channels of hair cells in the chicken’s cochlea. Proc Natl Acad Sci USA 94:14883–14888.

    PubMed  CAS  Google Scholar 

  • Kondrachuk AV (2002) Models of otolithic membrane-hair cell bundle interaction. Hear Res 166:96–112.

    PubMed  Google Scholar 

  • Kozel PJ, Friedman RA, Erway LC, Yamoah EN, Liu LH, Riddle T, Duffy JJ, Doetschman T, Miller ML, Cardell EL, Shull GE (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696.

    PubMed  CAS  Google Scholar 

  • Kreindler JL, Troyanovskaya M, Wackym PA (2001) Ligand-gated purinergic receptors are differentially expressed in the adult rat vestibular periphery. Ann Otol Rhinol Laryngol 110:277–282.

    PubMed  CAS  Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Lütjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446.

    PubMed  CAS  Google Scholar 

  • Kurc M, Farina M, Lins U, Kachar B (1999) Structural basis for mechanical transduction in the frog vestibular sensory apparatus: III. The organization of the otoconial mass. Hear Res 131:11–21.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Popper AN (1996) Novel afferent terminal structure in the crista ampullaris of the goldfish, carassius auratus. J Comp Neurol 366:572–579.

    PubMed  CAS  Google Scholar 

  • Lanford PJ, Platt C, Popper AN (2000) Structure and function in the saccule of the goldfish (Carassius auratus): a model of diversity in the non-amniote ear. Hear Res 143:1–13.

    PubMed  CAS  Google Scholar 

  • Lapeyre PNM, Cazals Y (1991) Guinea pig vestibular type I hair cells can show reversible shortening. J Vestib Res 1:241–250.

    CAS  Google Scholar 

  • Lapeyre PNM, Guilhaume A, Cazals Y (1992) Differences in hair bundles associated with type I and type II vestibular hair cells of the guinea pig saccule. Acta Otolaryngol (Stockh) 112:635–642.

    PubMed  CAS  Google Scholar 

  • Lapeyre PNM, Kolston PJ, Ashmore JF (1993) GABAB-mediated modulation of ionic conductances in type I hair cells isolated from guinea-pig semicircular canals. Brain Res 609:269–276.

    PubMed  CAS  Google Scholar 

  • Lasker D, Park HJ, Minor LB (2004) Extracellular recordings from vestibular-nerve afferents in the normal C5BL/6 mouse. Abstr Assoc Res Otolaryngol 27:936.

    Google Scholar 

  • Legan PK, Lukashkina VA, Goodyear RJ, Kossi M, Russell IJ, Richardson GP (2000) A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28:273–285.

    PubMed  CAS  Google Scholar 

  • Lennan GWT, Steinacker A, Lehouelleur J (1999) Ionic currents and current-clamp depolarisations of type I and type II hair cells from the developing rat utricle. Pflügers Arch 438:40–46.

    PubMed  CAS  Google Scholar 

  • Lenzi D, Runyeon JW, Crum J, Ellisman MH, Roberts WM (1999) Synaptic vesicle populations in saccular hair cells reconstructed by electron tomography. J Neurosci 19:119–132.

    PubMed  CAS  Google Scholar 

  • Leonard RB, Kevetter GA (2002) Molecular probes of the vestibular nerve. I. Peripheral termination patterns of calretinin, calbindin and peripherin containing fibers. Brain Res 928:8–17.

    PubMed  CAS  Google Scholar 

  • Lewis ER (1990) Electrical tuning in the ear. Comm Theor Biol 1:253–273.

    Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The Vertebrate Inner Ear. Boca Raton: CRC Press.

    Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Voltage-and ion-dependent conductances in solitary vertebrate hair cells. Nature 304:538–541.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1971) Vestibular sensory organs. A scanning electron microscopic investigation. Arch Otolaryngol 94:69–76.

    PubMed  CAS  Google Scholar 

  • Lim DJ (1976) Morphological and physiological correlates in cochlear and vestibular sensory epithelia. Scan Electron Microsc 1:269–276.

    Google Scholar 

  • Lim DJ (1979) Fine morphology of the otoconial membrane and its relationship to the sensory epithelium. Scan Electron Microsc 3:929–938.

    PubMed  Google Scholar 

  • Lim DJ (1984) Otoconia in health and disease. A review. Ann Otol Rhinol Laryngol Suppl 112:17–24.

    Google Scholar 

  • Lim DJ, Erway LC (1974) Influence of manganese on genetically defective otolith. A behavioral and morphological study. Ann Otol Rhinol Laryngol 83:565–581.

    PubMed  CAS  Google Scholar 

  • Lindeman HH (1969) Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb Anat Entwicklungsgesch 42:1–113.

    PubMed  CAS  Google Scholar 

  • Lindeman HH (1973) Anatomy of the otolith organs. Adv Otorhinolaryngol 20:405–433.

    PubMed  CAS  Google Scholar 

  • Lins U, Farina M, Kurc M, Riordan G, Thalmann R, Thalmann I, Kachar B (2000) The otoconia of the guinea pig utricle: internal structure, surface exposure, and interactions with the filament matrix. J Struct Biol 131:67–78.

    PubMed  CAS  Google Scholar 

  • Lioudyno MI, Verbitsky M, Holt JC, Elgoyhen AB, Guth PS (2000) Morphine inhibits an alpha9-acetylcholine nicotinic receptor-mediated response by a mechanism which does not involve opioid receptors. Hear Res 149:167–177.

    PubMed  CAS  Google Scholar 

  • Lioudyno MI, Verbitsky M, Glowatzki E, Holt JC, Boulter J, Zadina JE, Elgoyhen AB, Guth PS (2002) The alpha9/alpha10-containing nicotinic ACh receptor is directly modulated by opioid peptides, endomorphin-1, and dynorphin B, proposed efferent cotransmitters in the inner ear. Mol Cell Neurosci 20:695–711.

    PubMed  CAS  Google Scholar 

  • Lopez I, Wu JY, Meza G (1992) Immunocytochemical evidence for an afferent GABAergic neurotransmission in the guinea pig vestibular system. Brain Res 589:341–348.

    PubMed  CAS  Google Scholar 

  • Lopez I, Juiz JM, Altschuler RA, Meza G (1990) Distribution of GABA-like immunoreactivity in guinea pig vestibular cristae ampullaris. Brain Res 530:170–175.

    PubMed  CAS  Google Scholar 

  • Lorente de Nó R (1926) Etudes sur l’anatomie et la physiologie du labyrinth de l’oreille et du VIIIe nerf: II. Quelque données au sujet de l’anatomie des organes sensoriels du labyrinthe. Trav Lab Rech Biol Univ Madrid 24:53–153.

    Google Scholar 

  • Lowenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L.). Proc R Soc Lond B Biol Sci 170:113–134.

    PubMed  CAS  Google Scholar 

  • Lysakowski A (1996) Synaptic organization of the crista ampullares in vertebrates. Ann NY Acad Sci 781:164–182.

    PubMed  CAS  Google Scholar 

  • Lysakowski, A (1999) CGRP shows regional variation in efferent innervation of chinchilla vestibular periphery. Soc Neurosci Abstr 25:1670.

    Google Scholar 

  • Lysakowski A, Goldberg JM (1997) A regional ultrastructural analysis of the cellular and synaptic architecture in the chinchilla cristae ampullares. J Comp Neurol 389:419–443.

    PubMed  CAS  Google Scholar 

  • Lysakowski A, Goldberg JM (2004) Morphophysiology of the vestibular sensory periphery. In: Highstein SM, Popper AN, Fay RR (eds), Anatomy and Physiology of the Central and Peripheral Vestibular System. New York: Springer-Verlag, pp. 57–152.

    Google Scholar 

  • Lysakowski A, Price SD (2003) Potassium channel localization in sensory epithelia of the rat inner ear. Abstr Assoc Res Otolaryngol 26:1534.

    Google Scholar 

  • Lysakowski A, Singer M (2000) Nitric oxide synthase localized in a subpopulation of vestibular efferents with NADPH diaphorase histochemistry and nitric oxide synthase immunohistochemistry. J Comp Neurol 427:508–521.

    PubMed  CAS  Google Scholar 

  • Lysakowski A, Minor LB, Fernandez C, Goldberg JM (1995) Physiological identification of morphologically distinct afferent classes innervating the cristae ampullares of the squirrel monkey. J Neurophysiol 73:1270–1281.

    PubMed  CAS  Google Scholar 

  • Lysakowski A, Alonto A, Jacobson L (1999) Peripherin immunoreactivity labels small diameter vestibular ‘bouton’ afferents in rodents. Hear Res 133:149–154.

    PubMed  CAS  Google Scholar 

  • Lysakowski A, Dhaliwal J, Singer M (2000) NOS and elements of the nitric oxide cascade in vestibular efferents and hair cells. Abstr Assoc Res Otolaryngol 23:6683.

    Google Scholar 

  • Maison SF, Luebke AE, Liberman MC, Zuo J (2002) Efferent protection from acoustic injury is mediated via alpha9 nicotinic acetylcholine receptors on outer hair cells. J Neurosci 22:10838–10846.

    PubMed  CAS  Google Scholar 

  • Manley GA (2002) Evolution of structure and function of the hearing organ of lizards. J Neurobiol 53:202–211.

    PubMed  Google Scholar 

  • Manley GA, Sienknecht UJ, Koeppl C (2004) Calcium modulates the frequency and amplitude of spontaneous otoacoustic emissions in the bobtail skink. J Neurophysiol 92:2685–2693.

    PubMed  CAS  Google Scholar 

  • Marco J, Lee W, Suarez C, Hoffman L, Honrubia V (1993) Morphologic and quantitative study of the efferent vestibular system in the chinchilla: 3-D reconstruction. Acta Otolaryngol 113:229–234.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Kros CJ (1999) Developmental expression of the potassium current IK,n contributes to maturation of mouse outer hair cells. J Physiol 520:653–660.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Holley MC, Kros CJ (2003a) Developmental changes in the expression of potassium currents of embryonic, neonatal and mature mouse inner hair cells. J Physiol 548:383–400.

    PubMed  CAS  Google Scholar 

  • Marcotti W, Johnson SL, Rüsch A, Kros CJ (2003b) Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 552:743–761.

    PubMed  CAS  Google Scholar 

  • Marcus DC, Liu J, Wangemann P (1994) Transepithelial voltage and resistance of vestibular dark cell epithelium from the gerbil ampulla. Hear Res 73:101–108.

    PubMed  CAS  Google Scholar 

  • Marlinski V, Plotnik M, Goldberg JM (2004) Efferent actions in the chinchilla vestibular labyrinth. J Assoc Res Otolaryngol 5:126–143.

    PubMed  Google Scholar 

  • Maroni P, Lysakowski A, Luebke AE (1998) Alpha-9 nicotinic acetylcholine receptor subunit immunoreactivity in the rodent inner ear. Abstr Assoc Res Otolaryngol 21:65.

    Google Scholar 

  • Martinez-Dunst C, Michaels RL, Fuchs PA (1997) Release sites and calcium channels in hair cells of the chick’s cochlea. J Neurosci 17:9133–9144.

    PubMed  CAS  Google Scholar 

  • Martini M, Rossi ML, Rubbini G, Rispoli G (2000) Calcium currents in hair cells isolated from semicircular canals of the frog. Biophys J 78:1240–1254.

    PubMed  CAS  Google Scholar 

  • Masetto S, Correia MJ (1997a) Electrophysiological properties of vestibular sensory and supporting cells in the labyrinth slice before and during regeneration. J Neurophysiol 78:1913–1927.

    PubMed  CAS  Google Scholar 

  • Masetto S, Correia MJ (1997b) Ionic currents in regenerating avian vestibular hair cells. Int J Dev Neurosci 15:387–399.

    PubMed  CAS  Google Scholar 

  • Masetto S, Russo G, Prigioni I (1994) Differential expression of potassium currents by hair cells in thin slices of frog crista ampullaris. J Neurophysiol 72:443–455.

    PubMed  CAS  Google Scholar 

  • Masetto S, Perin P, Malusa A, Zucca G, Valli P (2000) Membrane properties of chick semicircular canal hair cells in situ during embryonic development. J Neurophysiol 83:2740–2756.

    PubMed  CAS  Google Scholar 

  • Masetto S, Bosica M, Correia MJ, Ottersen OP, Zucca G, Perin P, Valli P (2003) Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken. J Neurophysiol 90:1266–1278.

    PubMed  CAS  Google Scholar 

  • Matsubara A, Takumi Y, Nakagawa T, Usami S, Shinkawa H, Ottersen OP (1999) Immunoelectron microscopy of AMPA receptor subunits reveals three types of putative glutamatergic synapse in the rat vestibular end organs. Brain Res 819:58–64.

    PubMed  CAS  Google Scholar 

  • McCue M, Guinan JJ, Jr (1994) Influence of efferent stimulation on acoustically responsive vestibular afferents in the cat. J Neurosci 14:6071–6083.

    PubMed  CAS  Google Scholar 

  • McCue M, Guinan JJ, Jr (1995) Spontaneous activity and frequency selectivity of acoustically responsive vestibular afferents in the cat. J Neurophysiol 74:1563–1572.

    PubMed  CAS  Google Scholar 

  • McLaren JW, Hillman DE (1979) Displacement of the semicircular canal cupula during sinusoidal rotation. Neuroscience 4:2001–2008.

    PubMed  CAS  Google Scholar 

  • Moravec WJ, Peterson EH (2004) Differences between stereocilia numbers on type I and type II vestibular hair cells. J Neurophysiol 92:3153–3160.

    PubMed  CAS  Google Scholar 

  • Morita I, Komatsuzaki A, Tatsuoka H (1997) The morphological differences of stereocilia and cuticular plates between type-I and type-II hair cells of human vestibular sensory epithelia. ORL J Otorhinolaryngol Relat Spec 59:193–197.

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Akaike N, Kimitsuki T, Komune S, Arima T (1990) ATP-induced current in isolated outer hair cells of guinea pig cochlea. J Neurophysiol 63:1068–1074.

    PubMed  CAS  Google Scholar 

  • Newlands SD, Perachio AA (2003) Central projections of the vestibular nerve: a reviewand single fiber study in the Mongolian gerbil. Brain Res Bull 60:475–495.

    PubMed  Google Scholar 

  • Niedzielski AS, Wenthold RJ (1995) Expression of AMPA, kainate, and NMDA receptor subunits in cochlear and vestibular ganglia. J Neurosci 15:2338–2353.

    PubMed  CAS  Google Scholar 

  • Oesterle EC, Cunningham DE, Westrum LE, Rubel EW (2003) Ultrastructural analysis of [3H] thymidine-labeled cells in the rat utricular macula. J Comp Neurol 463:177–195.

    PubMed  Google Scholar 

  • Ogata Y, Slepecky NB (1998) Immunocytochemical localization of calmodulin in the vestibular end-organs of the gerbil. J Vestib Res 8:209–216.

    PubMed  CAS  Google Scholar 

  • Ogata Y, Slepecky NB, Takahashi M (1999) Study of the gerbil utricular macula following treatment with gentamicin, by use of bromodeoxyuridine and calmodulin immunohistochemical labelling. Hear Res 133:53–60.

    PubMed  CAS  Google Scholar 

  • Oliver D, Plinkert P, Zenner HP, Ruppersberg JP (1997) Sodium current expression during postnatal development of rat outer hair cells. Pflugers Arch 434:772–778.

    PubMed  CAS  Google Scholar 

  • Oliver D, Knipper M, Derst C, Fakler B (2003) Resting potential and submembrane calcium concentration of inner hair cells in the isolated mouse cochlea are set by KCNQ-type potassium channels. J Neurosci 23:2141–2149.

    PubMed  CAS  Google Scholar 

  • Ornitz DM, Bohne BA, Thalmann I, Harding GW, Thalmann R (1998) Otoconial agenesis in tilted mutant mice. Hear Res 122:60–70.

    PubMed  CAS  Google Scholar 

  • Osborne MP, Comis SD, Pickles JO (1984) Morphology and cross-linkage of stereocilia in the guinea-pig labyrinth examined without the use of osmium as a fixative. Cell Tissue Res 237:43–48.

    PubMed  CAS  Google Scholar 

  • Paffenholz R, Bergstrom RA, Pasutto F, Wabnitz P, Munroe RJ, Jagla W, Heinzmann U, Marquardt A, Bareiss A, Laufs J, Russ A, Stumm G, Schimenti JC, Bergstrom DE (2004) Vestibular defects in head-tilt mice result from mutations in Nox3, encoding an NADPH oxidase. Genes Dev 18:486–491.

    PubMed  CAS  Google Scholar 

  • Parsons TD, Lenzi D, Almers W, Roberts WM (1994) Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13:875–883.

    PubMed  CAS  Google Scholar 

  • Perachio AA, Kevetter GA (1989) Identification of vestibular efferent neurons in the gerbil: histochemical and retrograde labelling. Exp Brain Res 78:315–326.

    PubMed  CAS  Google Scholar 

  • Perry B, Jensen-Smith HC, Luduena RF, Hallworth R (2003) Selective expression of beta tubulin isotypes in gerbil vestibular sensory epithelia and neurons. J Assoc Res Otolaryngol 4:329–338.

    PubMed  Google Scholar 

  • Peterson EH (1998) Are there parallel channels in the vestibular nerve? News Physiol Sci 13:194–201.

    PubMed  Google Scholar 

  • Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. Trends Neurosci 15:254–259.

    PubMed  CAS  Google Scholar 

  • Platzer J, Engel J, Schrott-Fischer A, Stephan K, Bova S, Chen H, Zheng H, Striessnig J (2000) Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 102:89–97.

    PubMed  CAS  Google Scholar 

  • Plotnik M, Marlinski V, Goldberg JM (2002) Reflections of efferent activity in rotational responses of chinchilla vestibular afferents. J Neurophysiol 88: 1234–1244.

    PubMed  Google Scholar 

  • Popper P, Wackym PA, Siebenreich W, Cristobal R (2002) Distribution of opioid receptors in the vestibular periphery. Abstr Assoc Res Otolaryngol 25:111.

    Google Scholar 

  • Prigioni I, Russo G, Masetto S (1994) Non-NMDA receptors mediate glutamate-induced depolarization in frog crista ampullaris. NeuroReport 5:516–518.

    PubMed  CAS  Google Scholar 

  • Pujol R and Sans A (1986) Synaptogenesis in the mammalian inner ear. In: Norwood NJ, Ablex, Advances in Neural and Behavioral Development, Vol. 2 (Aslin RN (ed), pp. 1–18.

    Google Scholar 

  • Purcell IM, Perachio AA (1997) Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil. J Neurophysiol 78:3234–3248.

    PubMed  CAS  Google Scholar 

  • Puyal J, Sage C, Dememes D, Dechesne CJ (2002) Distribution of alpha-amino-3-hydroxy-5-methyl-4 isoazolepropionic acid and N-methyl-D-aspartate receptor subunits in the vestibular and spiral ganglia of the mouse during early development. Brain Res Dev Brain Res 139:51–57.

    PubMed  CAS  Google Scholar 

  • Quirion R, Van Rossum D, Dumont Y, St Pierre S, Fournier A (1992) Characterization of CGRP1 and CGRP2 receptor subtypes. Ann NY Acad Sci 657:88–105.

    PubMed  CAS  Google Scholar 

  • Rabbitt RD, Boyle R, Highstein SM (1999) Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics. J Neurophysiol 82:1033–1053.

    PubMed  CAS  Google Scholar 

  • Rabbitt RD, Damiano ER, Grant JW (2004) Biomechanics of the semicircular canals and otolith organs. In: (Highstein SM, Popper AN, Fay RR, (eds), Anatomy and Physiology of the Central and Peripheral Vestibular System. New York: Springer-Verlag, pp. 153–201.

    Google Scholar 

  • Rabbitt RD, Boyle R, Holstein GR, Highstein SM (2005) Hair-cell vs. afferent adaptation in the semicircular canals. J Neurophysiol 93(1):424–436.

    PubMed  CAS  Google Scholar 

  • Rau A, Legan PK, Richardson GP (1999) Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J Comp Neurol 405:271–280.

    PubMed  CAS  Google Scholar 

  • Raymond J, Nieoullon A, Dememes D, Sans A (1984) Evidence for glutamate as a neurotransmitter in the cat vestibular nerve: radioautographic and biochemical studies. Exp Brain Res 56:523–531.

    PubMed  CAS  Google Scholar 

  • Raymond J, Dechesne CJ, Desmadryl G, Dememes D (1993) Different calcium-binding proteins identify subpopulations of vestibular ganglion neurons in the rat. Acta Otolaryngol Suppl 503:114–118.

    Google Scholar 

  • Rennie KJ (2002) Modulation of the resting potassium current in type I vestibular hair cells by cGMP. In: Berlin CI, Hood LJ, Ricci AJ, (eds), Hair Cell Micromechanics and Otoacoustic Emissions. San Diego: Singular Press, pp. 79–89.

    Google Scholar 

  • Rennie KJ, Ashmore JF (1993) Effects of extracellular ATP on hair cells isolated from the guinea-pig semicircular canals. Neurosci Lett 160:185–189.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Correia MJ (1994) Potassium currents in mammalian and avian isolated type I semicircular canal hair cells. J Neurophysiol 71:317–329.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Ricci AJ (2004) Mechanoelectrical transduction (met) and basolateral currents in hair cells of the turtle utricle. Abstr Assoc Res Otolaryngol 27:1204.

    Google Scholar 

  • Rennie KJ, Ricci AJ, Correia MJ (1996) Electrical filtering in gerbil isolated type I semicircular canal hair cells. J Neurophysiol 75:2117–2123.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Ashmore JF, Correia MJ (1997) Evidence for an Na+-K+-Cl cotransporter in mammalian type I vestibular hair cells. Am J Physiol 273:C1972–C1980.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Weng T, Correia MJ (2001) Effects of KCNQ channel blockers on K+ currents in vestibular hair cells. Am J Physiol Cell Physiol 280:C473–C480.

    PubMed  CAS  Google Scholar 

  • Rennie KJ, Manning KC, Ricci AJ (2004) Mechano-electrical transduction in the turtle utricle. Biomed Sci Instrum 40:441–446.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Fettiplace R (1998) Calcium permeation of the turtle hair cell mechanotrans ducer channel and its relation to the composition of endolymph. J Physiol 506:159–173.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Rennie KJ, Correia MJ (1996) The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs. Pflügers Arch 432:34–42.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Wu Y-C, Fettiplace R (1998) The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J Neurosci 18:8261–8277.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Crawford AC, Fettiplace R (2002) Mechanisms of active hair bundle motion in auditory hair cells. J Neurosci 22:44–52.

    PubMed  CAS  Google Scholar 

  • Roberts BL, Russell IJ (1972) The activity of lateral-line efferent neurones in stationary and swimming dogfish. J Exp Biol 57:435–448.

    PubMed  CAS  Google Scholar 

  • Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262.

    PubMed  CAS  Google Scholar 

  • Roberts WM, Jacobs RA, Hudspeth AJ (1990) Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J Neurosci 10:3664–3684.

    PubMed  CAS  Google Scholar 

  • Rodriguez-Contreras A, Yamoah EN (2001) Direct measurement of single-channel Ca2+ currents in bullfrog hair cells reveals two distinct channel subtypes. J Physiol 534:669–689.

    PubMed  CAS  Google Scholar 

  • Rossi ML, Martini M, Pelucchi B, Fesce R (1994) Quantal nature of synaptic transmission at the cytoneural junction in the frog labyrinth. J Physiol 478:17–35.

    PubMed  Google Scholar 

  • Rüsch A, Eatock RA (1996a) A delayed rectifier conductance in type I hair cells of the mouse utricle. J Neurophysiol 76:995–1004.

    PubMed  Google Scholar 

  • Rüsch A, Eatock RA (1996b) Voltage responses of mouse utricular hair cells to injected currents. Ann NY Acad Sci 781:71–84.

    PubMed  Google Scholar 

  • Rüsch A, Thurm U (1989) Cupula displacement, hair bundle deflection, and physiological responses in the transparent semicircular canal of young eel. Pflügers Arch 413:533–545.

    PubMed  Google Scholar 

  • Rüsch A, Lysakowski A, Eatock RA (1998) Postnatal development of type I and type II hair cells in the mouse utricle: Acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 18:7487–7501.

    PubMed  Google Scholar 

  • Russell IJ (1971) The role of the lateral-line efferent system in Xenopus laevis. J Exp Biol 54:621–641.

    PubMed  CAS  Google Scholar 

  • Ryan AF, Simmons DM, Watts AG, Swanson LW (1991) Enkephalin mRNA production by cochlear and vestibular efferent neurons in the gerbil brainstem. Exp Brain Res 87:259–267.

    PubMed  CAS  Google Scholar 

  • Sage C, Venteo S, Jeromin A, Roder J, Dechesne CJ (2000) Distribution of frequenin in the mouse inner ear during development, comparison with other calcium-binding proteins and synaptophysin. Hear Res 150:70–82.

    PubMed  CAS  Google Scholar 

  • Saidel WM, Presson JC, Chang JS (1990) S-100 immunoreactivity identifies a subset of hair cells in the utricle and saccule of a fish. Hear Res 47:139–146.

    PubMed  CAS  Google Scholar 

  • Sans A, Chat M (1982) Analysis of temporal and spatial patterns of rat vestibular hair cell differentiation by tritiated thymidine radioautography. J Comp Neurol 206:1–8.

    PubMed  CAS  Google Scholar 

  • Sans A, Scarfone E (1996) Afferent calyces and type I hair cells during development. A new morphofunctional hypothesis. Ann NY Acad Sci 781:1–12.

    PubMed  CAS  Google Scholar 

  • Sans A, Dechesne CJ, Demêmes D (2001) The mammalian otolithic receptors: a complex morphological and biochemical organization. Adv Otorhinolaryngol 58:1–14.

    PubMed  CAS  Google Scholar 

  • Satzler K, Sohl LF, Bollmann JH, Borst JG, Frotscher M, Sakmann B, Lubke JH (2002) Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neurosci. 22:10567–10579.

    PubMed  CAS  Google Scholar 

  • Scarfone E, Demêmes D, Jahn R, De Camilli P, Sans A (1988) Secretory function of the vestibular nerve calyx suggested by the presence of vesicles, synapsin I, and synaptophysin. J Neurosci 8:4640–4645.

    PubMed  CAS  Google Scholar 

  • Scarfone E, Demêmes D, Sans A (1991) Synapsin I and synaptophysin expression during ontogenesis of the mouse peripheral vestibular system. J Neurosci 11:1173–1181.

    PubMed  CAS  Google Scholar 

  • Scarfone E, Ulfendahl M, Lundeberg T (1996) The cellular localization of the neuropeptides substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y in guinea-pig vestibular sensory organs: a high-resolution confocal microscopy study. Neuroscience 75:587–600.

    PubMed  CAS  Google Scholar 

  • Schessel DA, Ginzberg R, Highstein SM (1991) Morphophysiology of synaptic transmission between type I hair cells and vestibular primary afferents. An intracellular study employing horseradish peroxidase in the lizard, Calotes versicolor. Brain Res 544:1–16.

    PubMed  CAS  Google Scholar 

  • Schweitzer E (1987) Coordinated release of ATP and ACh from cholinergic synaptosomes and its inhibition by calmodulin antagonists. J Neurosci 7:2948–2956.

    PubMed  CAS  Google Scholar 

  • Selyanko AA, Hadley JK, Wood IC, Abogadie FC, Delmas P, Buckley NJ, London B, Brown DA (1999) Two types of K+ channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. J Neurosci 19:7742–7756.

    PubMed  CAS  Google Scholar 

  • Sewell WF (1996) Neurotransmitters and synaptic transmission. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer-Verlag, pp. 503–533.

    Google Scholar 

  • Shah MM, Mistry M, Marsh SJ, Brown DA, Delmas P (2002) Molecular correlates of the M-current in cultured rat hippocampal neurons. J Physiol 544:29–37.

    PubMed  CAS  Google Scholar 

  • Shepherd GM, Corey DP (1994) The extent of adaptation in bullfrog saccular hair cells. J Neurosci 14:6217–6229.

    PubMed  CAS  Google Scholar 

  • Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374:1–10.

    PubMed  CAS  Google Scholar 

  • Si X, Zakir MM, Dickman JD (2003) Afferent innervation of the utricular macula in pigeons. J Neurophysiol 89:1660–1677.

    PubMed  Google Scholar 

  • Sidi S, Busch-Nentwich E, Friedrich R, Schoenberger U, Nicolson T (2004) gemini encodes a zebrafish L-type calcium channel that localizes at sensory hair cell ribbon synapses. J Neurosci 24:4213–4223.

    PubMed  CAS  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Müller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–955.

    PubMed  CAS  Google Scholar 

  • Silver RB, Reeves AP, Steinacker A, Highstein SM (1998) Examination of the cupula and stereocilia of the horizontal semicircular canal in the toadfish Opsanus tau. J Comp Neurol 402:48–61.

    PubMed  CAS  Google Scholar 

  • Smith CA, Rasmussen GL (1968) Nerve endings in the maculae and cristae of the chinchilla vestibule with a special reference to the efferents. In: Graybiel A (ed), Third Symposium on the Role of Vestibular Organs in Space Exploration, NASA SP-152. Washington, DC: US. Government Printing Office, pp. 183–201.

    Google Scholar 

  • Smith CE, Goldberg JM (1986) A stochastic afterhyperpolarization model of repetitive activity in vestibular afferents. Biol Cybern 54:41–51.

    PubMed  CAS  Google Scholar 

  • Sobkowicz HM, Rose JE, Scott GE, Slapnick SM (1982) Ribbon synapses in the developing intact and cultured organ of Corti in the mouse. J Neurosci 2:942–957.

    PubMed  CAS  Google Scholar 

  • Sobkowicz HM, Rose JE, Scott GL, Levenick CV (1986) Distribution of synaptic ribbons in the developing organ of Corti. J Neurocytol 15:693–714.

    PubMed  CAS  Google Scholar 

  • Söllner C, Rauch GJ, Siemens J, Geisler R, Schuster SC, Müller U, Nicolson T (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959.

    PubMed  Google Scholar 

  • Spassova M, Eisen MD, Saunders JC, Parsons TD (2001) Chick cochlear hair cell exocytosis mediated by dihydropyridine-sensitive calcium channels. J Physiol 535:689–696.

    PubMed  CAS  Google Scholar 

  • Spicer SS, Schulte BA, Adams JC (1990) Immunolocalization of Na+,K+-ATPase and carbonic anhydrase in the gerbil’s vestibular system. Hear Res 43:205–217.

    PubMed  CAS  Google Scholar 

  • Spoendlin H (1965) Ultrastructural studies of the labyrinth in squirrel monkeys. In: Graybel A, (ed), First Symposium on the Role of Vestibular Organs in Space Exploration, NASA SP-77. Washington, DC: US Government Printing Office, pp. 7–22.

    Google Scholar 

  • Sridhar TS, Brown MC, Sewell WF (1997) Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales. J Neurosci 17:428–437.

    PubMed  CAS  Google Scholar 

  • Steenbergh PH, Hoppener JW, Zandberg J, Visser A, Lips CJ, Jansz HS (1986) Structure and expression of the human calcitonin/CGRP genes. FEBS Lett 209:97–103.

    PubMed  CAS  Google Scholar 

  • Sterkers O, Ferrary E, Amiel C (1988) Production of inner ear fluids. Physiol Rev 68:1083–1128.

    PubMed  CAS  Google Scholar 

  • Storm JF (1990) Potassium currents in hippocampal pyramidal cells. Prog Brain Res 83:161–187.

    PubMed  CAS  Google Scholar 

  • Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394.

    PubMed  CAS  Google Scholar 

  • Su Z-L, Jiang SC, Gu R, Yang WP (1995) Two types of calcium channels in bullfrog saccular hair cells. Hear Res 87:62–68.

    PubMed  CAS  Google Scholar 

  • Syeda SN, Lysakowski A (2001) P2X2 purinergic receptor localized in the inner ear. Abstr Assoc Res Otolaryngol 24:68.

    Google Scholar 

  • Takumi Y, Matsubara A, Danbolt NC, Laake JH, Storm-Mathisen J, Usami S, Shinkawa H, Ottersen OP (1997) Discrete cellular and subcellular localization of glutamine synthetase and the glutamate transporter GLAST in the rat vestibular end organ. Neuroscience 79:1137–1144.

    PubMed  CAS  Google Scholar 

  • Tanaka M, Takeda N, Senba E, Tohyama M, Kubo T, Matsunaga T (1988) Localization of calcitonin gene-related peptide in the vestibular end-organs in the rat: an immunohisto-chemical study. Brain Res 447:175–177.

    PubMed  CAS  Google Scholar 

  • Tanaka M, Takeda N, Senba E, Tohyama M, Kubo T, Matsunaga T (1989) Localization, origin and fine structure of calcitonin gene-related peptide-containing fibers in the vestibular end-organs of the rat. Brain Res 504:31–35.

    PubMed  CAS  Google Scholar 

  • ten Cate W-JF, Curtis LM, Rarey KE (1994) Na,K-ATPase α and β subunit isoform distribution in the rat cochlear and vestibular tissues. Hear Res 75:151–160.

    PubMed  CAS  Google Scholar 

  • Thalmann R, Ignatova E, Kachar B, Ornitz DM, Thalmann I (2001) Development and maintenance of otoconia: biochemical considerations. Ann NY Acad Sci 942:162–178.

    PubMed  CAS  Google Scholar 

  • Troyanovskaya M, Wackym PA (1998) Evidence for three additional P2X2 purinoceptor isoforms produced by alternative splicing in the adult rat vestibular end-organs. Hear Res 126:201–209.

    PubMed  CAS  Google Scholar 

  • Tsuprun V, Santi P (2000) Helical structure of hair cell stereocilia tip links in the chinchilla cochlea. J Assoc Res Otolaryngol 1:224–231.

    PubMed  CAS  Google Scholar 

  • Tucker TR, Fettiplace R (1996) Monitoring calcium in turtle hair cells with a calcium-activated potassium channel. J Physiol 494:613–626.

    PubMed  CAS  Google Scholar 

  • Usami S, Ottersen OP (1995) Differential cellular distribution of glutamate and glutamine in the rat vestibular endorgans: an immunocytochemical study. Brain Res 676:285–292.

    PubMed  CAS  Google Scholar 

  • Usami S, Igarashi M, Thompson GC (1987) GABA-like immunoreactivity in the squirrel monkey vestibular endorgans. Brain Res 417:367–370.

    PubMed  CAS  Google Scholar 

  • Van Rossum D, Hanisch UK, Quirion R (1997) Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 21:649–678.

    PubMed  Google Scholar 

  • Vega R, Soto E (2003) Opioid receptors mediate a postsynaptic facilitation and a presynaptic inhibition at the afferent synapse of axolotl vestibular hair cells. Neuroscience 118:75–85.

    PubMed  CAS  Google Scholar 

  • Vollrath MA, Eatock RA (2003) Time course and extent of mechanotransducer adaptation in mouse utricular hair cells: comparison with frog saccular hair cells. J Neurophysiol 90:2676–2689.

    PubMed  Google Scholar 

  • Wackym PA, Chen CT, Ishiyama A, Pettis RM, Lopez IA, Hoffman L (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int 20:187–192.

    PubMed  CAS  Google Scholar 

  • Wackym PA, Popper P, Lopez I, Ishiyama A, Micevych PE (1995) Expression of alpha 4 and beta 2 nicotinic acetylcholine receptor subunit mRNA and localization of alphabungarotoxin binding proteins in the rat vestibular periphery. Cell Biol Int 19:291–300.

    PubMed  CAS  Google Scholar 

  • Wackym PA, Popper P, Ward PH, Micevych PE (1991) Cell and molecular anatomy of nicotinic acetylcholine receptor subunits and calcitonin gene-related peptide in the rat vestibular system. Otolaryngol Head Neck Surg 105:493–510.

    PubMed  CAS  Google Scholar 

  • Wackym PA, Troyanovskaya M, Popper P (2000a) Adenylyl cyclase isoforms in the vestibular periphery of the rat. Brain Res 859:378–380.

    PubMed  CAS  Google Scholar 

  • Wackym PA, Troyanovskaya M, Popper P (2000b) Partial cDNAs encoding G-protein alpha subunits in the rat vestibular periphery. Neurosci Lett 280:159–162.

    PubMed  CAS  Google Scholar 

  • Walker RG, Hudspeth AJ (1996) Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog’s sacculus. Proc Natl Acad Sci USA 93:2203–2207.

    PubMed  CAS  Google Scholar 

  • Walker RG, Hudspeth AJ, Gillespie PG (1993) Calmodulin and calmodulin-binding proteins in hair bundles. Proc Natl Acad Sci USA 90:2807–2811.

    PubMed  CAS  Google Scholar 

  • Wang H-S, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: Molecular correlates of the Mchannel. Science 282:1890–1893.

    PubMed  CAS  Google Scholar 

  • Wang Y, Kowalski PE, Thalmann I, Ornitz DM, Mager DL, Thalmann R (1998) Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2. Proc Natl Acad Sci USA 95:15345–15350.

    PubMed  CAS  Google Scholar 

  • Wangemann P (1995) Comparison of ion transport mechanisms between vestibular dark cells and strial marginal cells. Hear Res 90:149–157.

    PubMed  CAS  Google Scholar 

  • Wangemann P, Schacht J (1996) Homeostatic mechanisms in the cochlea. In: Dallos P, Popper AN, Fay RR (eds), The Cochlea. New York: Springer-Verlag, pp. 130–185.

    Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brain stem: their location, morphology and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–181.

    PubMed  CAS  Google Scholar 

  • Weisstaub N, Vetter DE, Elgoyhen AB, Katz E (2002) The alpha9alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations. Hear Res 167:122–135.

    PubMed  CAS  Google Scholar 

  • Weng T, Correia MJ (1999) Regional distribution of ionic currents and membrane voltage responses of type II hair cells in the vestibular neuroepithelium. J Neurophysiol 82:2451–2461.

    PubMed  CAS  Google Scholar 

  • Werner CF (1933) The differentiation of the maculae in the labyrinth, particularly in mammals. Z Anat Entwicklungsgesch 99:696–709.

    Google Scholar 

  • Wersäll J (1956) Studies on the structure and innervation of the sensory epithelium of the cristae ampulares in the guinea pig; a light and electron microscopic investigation. Acta Otolaryngol Suppl 126:1–85.

    PubMed  Google Scholar 

  • Wersäll J (1981) Structural damage to the organ of Corti and the vestibular epithelia caused by aminoglycoside antibiotics in the guinea pig. In: Lerner SA, Matz GJ, Hawkins JE Jr. (eds), Aminoglycoside Ototoxicity. Boston: Little, Brown, pp. 197–214.

    Google Scholar 

  • Wersäll J, Bagger-Sjöbäck D (1974) Morphology of the vestibular sense organ. In: Kornhuber HH (ed), Handbook of Sensory Physiology. Vestibular System. Basic Mechanisms. New York: Springer-Verlag, pp. 123–170.

    Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian Vestibular Physiology. New York: Plenum Press.

    Google Scholar 

  • Wong WH, Hurley KM, Eatock RA (2004) Differences between the negatively activating potassium conductances of mammalian cochlear and vestibular hair cells. J Assoc Res Otolaryngol 5:270–284.

    PubMed  Google Scholar 

  • Wooltorton JRA, Hurley KM, Garcia J, Eatock RA (2005) Voltage-dependent sodium channels in rat utricular hair cells. Abstr Assoc Res Otolaryngol 28:526.

    Google Scholar 

  • Wu YC, Ricci AJ, Fettiplace R (1999) Two components of transducer adaptation in auditory hair cells. J Neurophysiol 82:2171–2181.

    PubMed  CAS  Google Scholar 

  • Xue J, Peterson EH (2003) Spatial patterns in the structure of otolithic membranes. Abstr Assoc Res Otolaryngol 26:126.

    Google Scholar 

  • Xue J, Peterson EH (2004) Organization of the utricular striola in Trachemys scripta: bundle heights. Abstr Assoc Res Otolaryngol 27:1114.

    Google Scholar 

  • Yamashita M, Ohmori H (1990) Synaptic responses to mechanical stimulation in calyceal and bouton type vestibular afferents studied in an isolated preparation of semicircular canal ampullae of chicken. Exp Brain Res 80:475–488.

    PubMed  CAS  Google Scholar 

  • Yamashita M, Ohmori H (1991) Synaptic bodies and vesicles in the calix type synapse of chicken semicircular canal ampullae. Neurosci Lett 129:43–46.

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Rabbitt RD, Boyle R, Highstein SM (2002) Relationship between inner-ear fluid pressure and semicircular canal afferent nerve discharge. J Assoc Res Otolaryngol 3:26–44.

    PubMed  CAS  Google Scholar 

  • Yamoah EN, Lumpkin EA, Dumont RA, Smith PJS, Hudspeth AJ, Gillespie PG (1998) Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci 18: 610–624.

    PubMed  CAS  Google Scholar 

  • Yan HY, Saidel WM, Chang JS, Presson JC, Popper AN (1991) Sensory hair cells of a fish ear: evidence of multiple types based on ototoxicity sensitivity. Proc R Soc Lond B Biol Sci 245:133–138.

    CAS  Google Scholar 

  • Ylikoski J, Pirvola U, Happola O, Panula P, Virtanen I (1989) Immunohistochemical demonstration of neuroactive substances in the inner ear of rat and guinea pig. Acta Otolaryngol 107:417–423.

    PubMed  CAS  Google Scholar 

  • Zhao Y, Yamoah EN, Gillespie PG (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci USA 93:15469–15474.

    PubMed  CAS  Google Scholar 

  • Zheng JL, Gao W-Q (1997) Analysis of rat vestibular hair cell development and regeneration using calretinin as an early marker. J Neurosci 17:8270–8282.

    PubMed  CAS  Google Scholar 

  • Zidanic M, Fuchs PA (1995) Kinetic analysis of barium currents in chick cochlear hair cells. Biophys J 68:1323–1336.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Eatock, R.A., Lysakowski, A. (2006). Mammalian Vestibular Hair Cells. In: Eatock, R.A., Fay, R.R., Popper, A.N. (eds) Vertebrate Hair Cells. Springer Handbook of Auditory Research, vol 27. Springer, New York, NY. https://doi.org/10.1007/0-387-31706-6_8

Download citation

Publish with us

Policies and ethics