Skip to main content

The Structure and Composition of the Stereociliary Bundle of Vertebrate Hair Cells

  • Chapter

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 27))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed ZM Riazuddin S, Ahmad J, Bernstein SL, Guo Y, Sabar MF, Sieving P, Riazuddin S, Griffith AJ, Friedman TB, Belyantseva IA, Wilcox ER (2003) PCDH15 is expressed in the neurosensory epithelium of the eye and the ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 12:3215–3223.

    Article  PubMed  CAS  Google Scholar 

  • Anderson DW, Probst FJ, Belyantseva IA, Fridell RA, Beyer L, Martin DM, Wu D, Kachar B, Friedman TB, Raphael Y, Camper SA (2000) The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 9:1729–1738.

    Article  PubMed  CAS  Google Scholar 

  • Angelborg C, Engström H (1973) The normal organ of Corti. In: Møller A (ed), Basic Mechansisms in Hearing. London: Academic Press, pp. 125–183.

    Google Scholar 

  • Anniko M, Thornell LE, Virtanen (1989) I. Actin-associated proteins and fibronectin in the fetal human inner ear. Am J Otolaryngol 10:99–109.

    Article  PubMed  CAS  Google Scholar 

  • Assad JA, Corey DP (1992) An active motor model for adaptation by vertebrate hair cells. J Neurosci 12:3291–3309.

    PubMed  CAS  Google Scholar 

  • Assad JA, Hacohen N, Corey DP (1989) Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc Natl Acad Sci USA 86:2918–2922.

    Article  PubMed  CAS  Google Scholar 

  • Assad JA, Shepherd GM, Corey DP (1991) Tip-link integrity and mechanical transduction in vertebrate hair cells. Neuron 7:985–994.

    Article  PubMed  CAS  Google Scholar 

  • Avraham KB, Hasson T, Steel KP, Kingsley DM, Russell LB, Mooseker MS, Copeland NG, Jenkins NA (1995) The mouse Snell’s waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Bagger-Sjöbäck D, Takumida M (1988) Geometrical array of the vestibular sensory hair bundle. Acta Otolaryngol 106:393–403.

    PubMed  Google Scholar 

  • Bagger-Sjöbäck D, Wersäll J (1973) The sensory hairs and tectorial membrane in the basilar papilla of the lizard, Calotes versicolor. J Neurocytol 2:329–350.

    Article  PubMed  Google Scholar 

  • Baird RA, Schuff NR, Bancroft J (1993) Regional differences in lectin binding patterns of vestibular hair cells. Hear Res 65:151–163.

    Article  PubMed  CAS  Google Scholar 

  • Baird RA, Steyger PS, Schuff NR (1997) Intracellular distributions and putative functions of calcium-binding proteins in the bullfrog vestibular otolith organs. Hear Res 103:85–100.

    Article  PubMed  CAS  Google Scholar 

  • Barber VC, Emerson CJ (1979) Cupula-receptor cell relationships with evidence provided by SEM microdissection. Scan Electron Microsc 3:939–948.

    PubMed  Google Scholar 

  • Bartles JR, Wierda A, Zheng L (1996) Identification and characterization of espin, an actin-binding protein localized to the F-actin-rich junctional plaques of Sertoli cell ectoplasmic specializations. J Cell Sci 109:1229–1239.

    PubMed  CAS  Google Scholar 

  • Bartles JR, Zheng L, Li A, Wierda A, Chen B (1998) Small espin: a third actin-bundling protein and potential forked protein ortholog in brush border microvilli. J Cell Biol 143:107–119.

    Article  PubMed  CAS  Google Scholar 

  • Batanov ME, Goodyear RJ, Richardson GP, Russell IJ (2004) The mechanical properties of sensory hair bundles: relative contributions of structures sensitive to calcium chelation and subtilisin treatment. J Physiol 559:3474–3479.

    Google Scholar 

  • Bearer EL (1992) An actin-associated protein present in the microtubule organizing center and the growth cones of PC-12 cells. J Neurosci 12:750–761.

    PubMed  CAS  Google Scholar 

  • Bearer EL, Abraham MT (1999) 2E4 (kaptin): a novel actin-associated protein from human blood platelets found in lamellipodia and the tips of the stereocilia of the inner ear. Eur J Cell Biol 78:117–126.

    PubMed  CAS  Google Scholar 

  • Bearer EL, Chen AF, Chen AH, Li Z, Mark HF, Smith RJ, Jackson CL (2000) 2E4/Kaptin (KPTN)—a candidate gene for the hearing loss locus, DFNA4. Ann Hum Genet 64:189–196.

    Article  PubMed  CAS  Google Scholar 

  • Belyantseva IA, Boger ET, Fredmann TB (2003) Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci 25:13958–13963.

    Article  CAS  Google Scholar 

  • Benser ME, Marquis RE, Hudspeth AJ (1996) Rapid, active hair bundle movements in hair cells from the bullfrog’s sacculus. J Neurosci 16:5629–5643.

    PubMed  CAS  Google Scholar 

  • Berg JS, Powell BC, Cheney RE (2001) A millennial myosin census. Mol Biol Cell 12:780–794.

    PubMed  CAS  Google Scholar 

  • Boeda B, El-Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, Perfettini I, Fath KR, Shorte S, Reiners J, Houdusse A, Legrain P, Wolfrum U, Richardson G, Petit C (2002) Myosin VIIa, harmonin and cadherin 23, three Usher 1 gene products that cooperate to shape the sensory hair bundle. EMBO J 21:6689–6699.

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A, Weber K (1980) Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol 86:335–340.

    Article  PubMed  CAS  Google Scholar 

  • Bryant J, Goodyear RJ, Richardson GP (2002) Sensory organ development in the inner ear: molecular and cellular mechanisms. Br Med Bull 63:39–57.

    Article  PubMed  CAS  Google Scholar 

  • Carlisle L, Zajic G, Altschuler RA, Schacht J, Thorne PR (1988) Species differences in the distribution of infracuticular F-actin in outer hair cells of the cochlea. Hear Res 33:201–205.

    Article  PubMed  CAS  Google Scholar 

  • Chen B, Li A, Wang D, Wang M, Zheng L, Bartles JR (1999) Espin contains an additional actin-binding site in its N terminus and is a major actin-bundling protein of the Sertoli cell-spermatid ectoplasmic specialization junctional plaque. Mol Biol Cell 10:4327–4339.

    PubMed  CAS  Google Scholar 

  • Cheung WY (1980) Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Response latency of vertebrate hair cells. Biophys J 26:499–506.

    PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3:962–976.

    PubMed  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434.

    PubMed  CAS  Google Scholar 

  • Crouch JJ, Schulte BA (1995) Expression of plasma membrane Ca-ATPase in the adult and developing gerbil cochlea. Hear Res 92:112–119.

    Article  PubMed  CAS  Google Scholar 

  • Crouch JJ, Schulte BA (1996) Identification and cloning of site C splice variants of plasma membrane Ca-ATPase in the gerbil cochlea. Hear Res 101:55–61.

    Article  PubMed  CAS  Google Scholar 

  • Crozet F, el Amraoui A, Blanchard S, Lenoir M, Ripoll C, Vago P, Hamel C, Fizames C, Levi-Acobas F, Depetris D, Mattei MG, Weil D, Pujol R, Petit C (1997) Cloning of the genes encoding two murine and human cochlear unconventional type I myosins. Genomics 40:332–341.

    Article  PubMed  CAS  Google Scholar 

  • Cyr JL, Dumont RA, Gillespie PG (2002) Myosin-1c interacts with hair-cell receptors through its calmodulin-binding IQ domains. J Neurosci 22:2487–2495.

    PubMed  CAS  Google Scholar 

  • Czukas SR, Rosenquist TH, Mulroy MJ (1987) Connections between stereocilia in auditory hair cells of the alligator lizard. Hear Res 30:147–156.

    Article  Google Scholar 

  • Danbolt NC, Lehre KP, Dehnes Y, Chaudrhy FA, Levy LM (1998) Localization of transporters using transporter-specific antibodies. Meth Enzymol 296:388–407.

    Article  PubMed  CAS  Google Scholar 

  • Daudet N, Lebart MC (2002) Transient expression of the t-isoform of plastins/fimbrin in the stereocilia of developing auditory hair cells. Cell Motil Cytoskel 53:326–336.

    Article  CAS  Google Scholar 

  • de Arruda, MV, Watson S, Lin C-S, Levitt J, Matsudaira, P (1990) Fimbrin is a homologue of the cytoplasmic phosphoprotein plastin and has domains homologous with calmodulin and actin gelation proteins. J Cell Biol 111:1069–1079.

    Article  PubMed  Google Scholar 

  • Dechesne CJ, Thomasset M (1988) Calbindin (CaBP 28 kDa) appearance and distribution during development of the mouse inner ear. Brain Res 468:233–242.

    PubMed  CAS  Google Scholar 

  • Dechesne CJ, Winsky L, Kim HN, Goping G, Vu TD, Wenthold RJ, Jacobowitz DM (1991) Identification and ultrastructural localization of a calretinin-like calcium-binding protein (protein 10) in the guinea pig and rat inner ear. Brain Res 560:139–148.

    Article  PubMed  CAS  Google Scholar 

  • Dechesne CJ, Rabejac D, Desmadryl G (1994) Development of calretinin immunoreactivity in the mouse inner ear. J Comp Neurol 346:517–529.

    Article  PubMed  CAS  Google Scholar 

  • Denk W, Holt JR, Shepherd GM, Corey DP (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15:1311–1321.

    Article  PubMed  CAS  Google Scholar 

  • Dolgobrodov SG, Lukashkin AN, Russell IJ (2000) Electrostatic interaction between stereocilia: I. Its role in supporting the structure of the hair bundle. Hear Res 150:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D, Kellner J, Mannherz HG, Groschel-Stewart U, Kendrick-Jones J, Scholey J (1982) Absence of myosin-like immunoreactivity in stereocilia of cochlear hair cells. Nature 300:531–532.

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D, Engel K, Hofer D, Merte C, Tilney L, Tilney M (1991) Three different actin filament assemblies occur in every hair cell: each contains a specific actin crosslinking protein. J Cell Biol 112:641–651.

    Article  PubMed  CAS  Google Scholar 

  • Dumont RA, Lins U, Filoteo AG, Penniston JT, Kachar B, Gillespie PG (2001) Plasma membrane Ca2+-ATPase isoform 2a is the PMCA of hair bundles. J Neurosci 21:5066–5078.

    PubMed  CAS  Google Scholar 

  • Dumont RA, Yi-Dong Z, Holt JR, Bähler M, Gillespie PG (2002) Myosin I isozymes in neonatal rodent auditory and vestibular epithelia. J Assoc Res Otolaryngol 3:37–389.

    Article  Google Scholar 

  • Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 7:2821–2836.

    PubMed  CAS  Google Scholar 

  • Edmonds B, Reyes R, Schwaller B, Roberts WM (2000) Calretinin modifies presynaptic calcium signaling in frog saccular hair cells. Nat Neurosci 3:786–790.

    Article  PubMed  CAS  Google Scholar 

  • Engström H, Engström B (1978) Structure of the hairs on cochlear sensory cells. Hear Res 1:49–66.

    Article  PubMed  Google Scholar 

  • Eybalin M, Ripoll C (1990) Immunolocalization of parvalbumin in two glutamatergic cell types of the guinea pig cochlea: inner hair cells and spiral ganglion neurons. C R Acad Sci III 310:639–644.

    PubMed  CAS  Google Scholar 

  • Feldner JC, Brandt BH (2002) Cancer cell motility—on the road from c-erbB-2 receptor steered signaling to actin reorganization. Exp Cell Res 272:93–108.

    Article  PubMed  CAS  Google Scholar 

  • Fettiplace R, Ricci AJ, Hackney CM (2001) Clues to the cochlear amplifier from the turtle ear. Trends Neurosci 24:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Flock Å, Cheung HC (1977) Actin filaments in sensory hairs of inner ear receptor cells. J Cell Biol 75:339–343.

    Article  PubMed  CAS  Google Scholar 

  • Flock Å, Flock B, Murray E (1977) Studies on the sensory receptor hairs of receptor cells in the inner ear. Acta Otolaryngol 83:85–91.

    PubMed  CAS  Google Scholar 

  • Flock Å, Bretscher A, Weber K (1982) Immunohistochemical localization of several cytoskeletal proteins in inner ear sensory and supporting cells. Hear Res 7:75–89.

    Article  PubMed  CAS  Google Scholar 

  • Frolenkov GI, Belyantseva IA, Friedmann, Griffith AJ (2004) Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 5:489–498.

    Article  PubMed  CAS  Google Scholar 

  • Furness DN, Hackney CM (1985) Cross-links between stereocilia in the guinea pig cochlea. Hear Res 18:177–188.

    Article  PubMed  CAS  Google Scholar 

  • Furness DN, Hackney CM (1986) Morphological changes to the stereociliary bundles in the guinea pig cochlea after kanamycin treatment. Br J Audiol 20:253–259.

    PubMed  CAS  Google Scholar 

  • Furness DN, Hackney, CM (1987) Cytoskeletal organization in the apex of cochlear hair cells. In: Syka JB, Masterton R (eds), Auditory Pathway. New York: Plenum, pp. 23–28.

    Google Scholar 

  • Furness DN, Hackney CM (1990) Comparative ultrastructure of subsurface cisternae in inner and outer hair cells of the guinea pig cochlea. Eur Arch Otorhinolaryngol 247:12–15.

    Article  PubMed  CAS  Google Scholar 

  • Furness DN, Hackney CM, Steyger PS (1990) Organization of microtubules in cochlear hair cells. J Electron Microsc Tech 15:261–279.

    Article  PubMed  CAS  Google Scholar 

  • Furness DN, Hackney CM, Benos DJ (1996) The binding site on cochlear stereocilia for antisera raised against renal Na+ channels is blocked by amiloride and dihydrostreptomycin. Hear Res 93:136–146.

    Article  PubMed  CAS  Google Scholar 

  • Furness DN, Zetes DE, Hackney CM, Steele CR (1997) Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells. Proc R Soc Lond B Biol Sci 264:45–51.

    Article  CAS  Google Scholar 

  • Furness DN, Karkanevatos A, West B, Hackney CM (2002) An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells. Hear Res 173:10–20.

    Article  PubMed  CAS  Google Scholar 

  • Furness DN, Katori Y, Mahendrasingam S, Hackney CM (2005) Differential distribution of β-and γ-actin in guinea-pig cochlear sensory and supporting calls. Hear Res (in press).

    Google Scholar 

  • Garcia JA, Yee AG, Gillespie PG, Corey DP (1998) Localization of myosin-Ibeta near both ends of tip links in frog saccular hair cells. J Neurosci 18:8637–8647.

    PubMed  CAS  Google Scholar 

  • Geisler CD (1993) A model of stereociliary tip-link stretches. Hear Res 65:79–82.

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Hudspeth AJ (1993) Adenine nucleoside diphosphates block adaptation of mechanoelectrical transduction in hair cells. Proc Natl Acad Sci USA 90:2710–2714.

    Article  PubMed  CAS  Google Scholar 

  • Gil-Loyzaga P, Brownell WE (1988) Wheat germ agglutinin and Helix pomatia agglutinin lectin binding on cochlear hair cells. Hear Res 34:149–155.

    Article  PubMed  CAS  Google Scholar 

  • Goodman M, Pechere JF (1977) The evolution of muscular parvalbumins investigated by the maximum parsimony method. J Mol Evol 9:131–158.

    Article  PubMed  CAS  Google Scholar 

  • Goodyear R, Richardson G (1992) Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chicken inner ear. J Comp Neurol 325:243–256.

    Article  PubMed  CAS  Google Scholar 

  • Goodyear R, Richardson G (1994) Differential glycosylation of auditory and vestibular hair bundle proteins revealed by peanut agglutinin. J Comp Neurol 345:267–278.

    Article  PubMed  CAS  Google Scholar 

  • Goodyear R, Richardson G (1999) The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J Neurosci 19:3761–3772.

    PubMed  CAS  Google Scholar 

  • Goodyear R, Richardson G (2003) A novel antigen sensitive to calcium chelation that is associated with the tip links and kinocilial links of sensory hair bundles. J Neurosci 23:4878–4887.

    PubMed  CAS  Google Scholar 

  • Griesinger CB, Richards CD, Ashmore JF (2002) Fm1-43 reveals membrane recycling in adult inner hair cells of the mammalian cochlea. J Neurosci 22:3939–3952.

    PubMed  CAS  Google Scholar 

  • Gundersen V, Danbolt NC, Ottersen OP, Storm-Mathisen J (1993) Demonstration of glutamate/aspartate uptake activity in nerve endings by use of antibodies recognizing exogenous d-aspartate. Neuroscience 57:97–111.

    Article  PubMed  CAS  Google Scholar 

  • Hackney CM, Furness DN (1986) Intercellular cross-linkages between the stereociliary bundles of adjacent hair cells in the guinea pig cochlea. Cell Tissue Res 245:685–688.

    Article  PubMed  CAS  Google Scholar 

  • Hackney CM, Furness DN (1995) Mechanotransduction in vertebrate hair cells: structure and function of the stereociliary bundle. Am J Physiol 268:C1–13.

    PubMed  CAS  Google Scholar 

  • Hackney CM, Furness DN, Sayers DL (1988) Stereociliary cross-links between adjacent inner hair cells. Hear Res 34:207–212.

    Article  PubMed  CAS  Google Scholar 

  • Hackney CM, Furness DN, Benos DJ, Woodley JF, Barratt J (1992) Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells. Proc R Soc Lond B Biol Sci 248:215–221.

    CAS  Google Scholar 

  • Hackney CM, Fettiplace R, Furness DN (1993) The functional morphology of stereociliary bundles on turtle cochlear hair cells. Hear Res 69:163–175.

    Article  PubMed  CAS  Google Scholar 

  • Hackney CM, Mahendrasingam S, Jones EMC, Fettiplace R (2003) The distribution of calcium buffering proteins in the turtle cochlea. J Neurosci 23:4577–4589.

    PubMed  CAS  Google Scholar 

  • Hackney CM, Mahendrasingam S, Penn A, Fettiplace R (2005) The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci 25:7867–7875.

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Lane D (1999) Using Antibodies: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Hasson T, Gillespie PG, Garcia JA, MacDonald RB, Zhao Y, Yee AG, Mooseker MS, Corey DP (1997) Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 137:1287–1307.

    Article  PubMed  CAS  Google Scholar 

  • Heller S, Bell AM, Denis CS, Choe Y, Hudspeth AJ (2002) Parvalbumin 3 is an abundant Ca2+ buffer in hair cells. J Assoc Res Otolaryngol 3:488–498.

    Article  PubMed  Google Scholar 

  • Henzl MT, Larson JD, Agah S (2003) Estimation of parvalbumin Ca2+ and Mg2+ binding constants by global least-squares analysis of isothermal titration calorimetry data. Anal Biochem 319:216–233.

    Article  PubMed  CAS  Google Scholar 

  • Hiel H, Navaratnam DS, Oberholtzer JC, Fuchs PA (2002) Topological and developmental gradients of calbindin expression in the chick’s inner ear. J Assoc Res Otolaryngol 3:1–15.

    Article  PubMed  Google Scholar 

  • Hillman DE (1969) New ultrastructural findings regarding a vestibular ciliary apparatus and its possible functional significance. Brain Res 13:407–412.

    Article  PubMed  CAS  Google Scholar 

  • Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S, Tsukita S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin)protein/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rhodependent signaling pathway. J Cell Biol 135:37–51.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa N, Tilney LG (1982) Interactions between actin filaments and between actin filaments and membranes in quick-frozen and deeply etched hair cells of the chick ear. J Cell Biol 95:249–261.

    Article  PubMed  CAS  Google Scholar 

  • Hofer D, Ness W, Drenckhahn D (1997) Sorting of actin isoforms in chicken auditory hair cells. J Cell Sci 110:765–770.

    PubMed  Google Scholar 

  • Holme R, Steel KP (2004) Progressive hearing loss and increased susceptibility to noise-induced hearing loss in mice carrying a Cdh23 but not a Myo7a mutation. J Assoc Res Otolaryngol 5:66–79.

    Article  PubMed  Google Scholar 

  • Holmes GR, Goll DE, Suzuki A (1971) Effect of α-actinin on actin viscosity. Biochim Biophys Acta 253:240–253.

    Article  PubMed  CAS  Google Scholar 

  • Holt JR, Corey DP, Eatock RA (1997) Mechanoelectrical transduction and adaptation in hair cells of the mouse utricle, a low-frequency vestibular organ. J Neurosci 17:8739–8748.

    PubMed  CAS  Google Scholar 

  • Holt JR, Gillespie SK, Provance DW, Shah K, Shokat KM, Corey DP, Mercer JA, Gillespie PG (2002) A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108:371–381.

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T (1975) An electron microscopic study of the otolithic maculae of the lamprey (Entosphenus japonicus). Acta Otolaryngol 80:43–53.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1989) How the ear’s works work. Nature 341:397–404.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ (1997) How hearing happens. Neuron 19:947–950.

    Article  PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 74:2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Imamura S, Adams JC (1996) Immunolocalization of peptide 19 and other calcium-binding proteins in the guinea pig cochlea. Anat Embryol (Berl) 194:407–418.

    Article  PubMed  CAS  Google Scholar 

  • Itoh M (1982) Preservation and visualization of actin-containing filaments in the apical zone of cochlear sensory cells. Hear Res 6:277–289.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RA, Hudspeth AJ (1990) Ultrastructural correlates of mechanoelectrical transduction in hair cells of the bullfrog’s internal ear. Cold Spring Harb Symp Quant Biol 55:547–561.

    PubMed  CAS  Google Scholar 

  • Jaeger RG, Fex J, Kachar B (1994) Structural basis for mechanical transduction in the frog vestibular sensory apparatus: II. The role of microtubules in the organization of the cuticular plate. Hear Res 77:207–215.

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7: 409–420.

    Article  PubMed  CAS  Google Scholar 

  • Jensen-Smith HC, Eley J, Steyger PS, Luduena RF, Hallworth R (2003) Cell type-specific reduction of beta-tubulin isotypes synthesised in the developing gerbil organ of Corti. J Neurocytol 32:185–197.

    Article  PubMed  CAS  Google Scholar 

  • Jørgensen F, Ohmori H (1988) Amiloride blocks the mechanoelectrical transduction channel of hair cells of the chick. J Physiol Lond 403:577–588.

    PubMed  Google Scholar 

  • Kachar B, Battaglia A, Fex J (1997) Compartmentalized vesicular traffic around the hair cell cuticular plate. Hear Res 107:102–112.

    Article  PubMed  CAS  Google Scholar 

  • Kachar B, Parakkal M, Kurc M, Zhao Y, Gillespie PG (2000) High-resolution structure of hair-cell tip links. Proc Natl Acad Sci USA 97:13336–13341.

    Article  PubMed  CAS  Google Scholar 

  • Karkanevatos A (2001) Ultrastructural localization of cytoskeletal proteins in guinea-pig cochlear hair cells. M. Phil Thesis, Keele University, UK.

    Google Scholar 

  • Katori Y, Takasaka T, Ishikawa M, Tonosaki A (1994) Fine structure and lectin histochemistry of the apical surface of the free neuromast of Lampetra japonica. Cell Tissue Res 276:245–252.

    Google Scholar 

  • Katori Y, Hackney CM, Furness DN (1996a) Immunoreactivity of sensory hair bundles of the guinea-pig cochlea to antibodies against elastin and keratan sulphate. Cell Tissue Res 284:473–479.

    Article  PubMed  CAS  Google Scholar 

  • Katori Y, Tonosaki A, Takasaka T (1996b) WGA lectin binding sites of the apical surface of Corti epithelium: enhancement by back-scattered electron imaging in guinea-pig inner ear. J Electron Microsc (Tokyo) 45:207–212.

    CAS  Google Scholar 

  • Kikkawa Y, Shitara H, Wakana S, Kohara Y, Takada T, Okamoto M, Taya C, Kamiya K, Yoshikawa Y, Tokano H, Kitamura K, Shimizu K, Wakabayashi Y, Shiroishi T, Kominami R, Yonekawa H (2003) Mutations in a new scaffold protein Sans cause deafness in Jackson shaker mice. Hum Mol Genet 12:453–461.

    Article  PubMed  CAS  Google Scholar 

  • Killick R, Richardson GP (1997) Antibodies to the sulphated, high molecular mass mouse tectorin stain hair bundles and the olfactory mucus layer. Hear Res 103:131–141.

    Article  PubMed  CAS  Google Scholar 

  • Kimura RS (1975) The ultrastructure of the organ of Corti. Int Rev Cytol 42:173–222.

    Article  PubMed  CAS  Google Scholar 

  • Klee CB, Crouch TH, Richman PG (1980) Calmodulin. Annu Rev Biochem 49:489–515.

    Article  PubMed  CAS  Google Scholar 

  • Kollmar R (1999) Who does the hair cell’s’ do? Rho GTPases and hair-bundle morphogenesis. Curr Opin Neurobiol 9: 394–398.

    Article  PubMed  CAS  Google Scholar 

  • Kössl M, Richardson GP, Russell IJ (1990) Stereocilia bundle stiffness: effects of neomycin sulphate, A23187 and concanavalin A. Hear Res 44:217–229.

    Article  PubMed  Google Scholar 

  • Kozel PJ, Friedman RA, Erway LC, Yamoah EN, Liu LH, Riddle T, Duffy JJ, Doetschman T, Miller ML, Cardell EL, Shull GE (1998) Balance and hearing deficits in mice with a null mutation in the gene encoding plasma membrane Ca2+-ATPase isoform 2. J Biol Chem 273:18693–18696.

    Article  PubMed  CAS  Google Scholar 

  • Kros CJ, Marcotti W, van Netten SM, Self TJ, Libby RT, Brown SD, Richardson GP, Steel KP (2002) Reduced climbing and increased slipping adaptation in cochlear hair cells of mice with Myo7a mutations. Nat Neurosci 5:41–47.

    Article  PubMed  CAS  Google Scholar 

  • Kussel-Andermann P, El-Amraoui A, Safieddine S, Nouaille S, Perfettini I, Lecuit M, Cossart P, Wolfrum U, Petit C (2000) Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex. EMBO J 19:6020–6029.

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Cotanche DA (1996) Localization of the hair-cell-specific protein fimbrin during regeneration in the chicken cochlea. Audiol Neurootol 1:41–53.

    PubMed  CAS  Google Scholar 

  • Lewis ER, Li CW (1975) Hair cell types and distributions in the otolithic and auditory organs of the bullfrog. Brain Res 83:35–50.

    Article  Google Scholar 

  • Liang Y, Wang A, Belyantseva IA, Anderson DW, Probst FJ, Barber TD, Miller W, Touchman JW, Jin L, Sullivan SL, Sellers JR, Camper SA, Lloyd RV, Kachar B, Friedman TB, Fridell RA (1999) Characterization of the human and mouse unconventional myosin XV genes responsible for hereditary deafness DFNB3 and shaker 2. Genomics 61:243–258.

    Article  PubMed  CAS  Google Scholar 

  • Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146.

    Article  PubMed  CAS  Google Scholar 

  • Lin C-S, Shen W, Chen ZP, Tu Y-H, Matsudaira P (1994) Identification of I-plastin, a human fimbrin isoform expressed in intestine and kidney. Mol Cell Biol 14:2457–2467.

    PubMed  CAS  Google Scholar 

  • Little KF, Neugebauer D-Ch (1985) Interconnections between the stereovilli of the fish inner ear. II. Systematic investigation of saccular hair bundles from Rutilus rutilus (Teleostei). Cell Tissue Res 242:427–432.

    Article  Google Scholar 

  • Littlewood-Evans A, Müller U (2000) Stereocilia defects in the sensory hair cells of the inner ear in mice deficient in integrin alpha8beta1. Nat Genet 24:424–428.

    Article  PubMed  CAS  Google Scholar 

  • Lumpkin EA, Hudspeth AJ (1995) Detection of Ca2+ entry through mechanosensitive channels localizes the site of mechanoelectrical transduction in hair cells. Proc Natl Acad Sci USA 92:10297–10301.

    Article  PubMed  CAS  Google Scholar 

  • Lumpkin EA, Hudspeth AJ (1998) Regulation of free Ca2+ concentration in hair-cell stereocilia. J Neurosci 18:6300–6318.

    PubMed  CAS  Google Scholar 

  • Lynch ED, Lee MK, Morrow JE, Welcsh PL, Leon PE, King MC (1997) Nonsyndromic deafness DFNA1 associated with mutation of a human homolog of the Drosophila gene diaphanous. Science 278:1315–1318.

    Article  PubMed  CAS  Google Scholar 

  • Macartney JC, Comis SD, Pickles JO (1980) Is myosin in the cochlea a basis for active motility? Nature 288:491–492.

    Article  PubMed  CAS  Google Scholar 

  • MacManus JP (1979) Occurrence of a low-molecular-weight calcium-binding protein in neoplastic liver. Cancer Res 39:3000–3005.

    PubMed  CAS  Google Scholar 

  • Mahendrasingam S, Furness DN, Hackney CM (1998) Ultrastructural localisation of spectrin in sensory and supporting cells of guinea-pig organ of Corti. Hear Res 126: 151–160.

    Article  PubMed  CAS  Google Scholar 

  • Manley GA (2000) Cochlear mechanisms from a phylogenetic viewpoint. Proc Natl Acad Sci USA 97:11736–11743.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP (1996) Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci 16:4457–4467.

    PubMed  CAS  Google Scholar 

  • Mburu P, Mustapha M, Varela A, Weil D, El-Amraoui A, Holme RH, Rump A, Hardisty RE, Blanchard S, Coimbra RS, Perfettini I, Parkinson N, Mallon AM, Glenister P, Rogers MJ, Paige AJ, Moir L, Clay J, Rosenthal A, Liu XZ, Blanco G, Steel KP, Petit C, Brown SD (2003) Defects in whirlin, a PDZ domain molecule involved in stereocilia elongation, cause deafness in the whirler mouse and families with DFNB31. Nat Genet 34:421–428.

    Article  PubMed  CAS  Google Scholar 

  • Means AR, Dedman JR (1980) Calmodulin-an intracellular calcium receptor. Nature 285:73–77.

    Article  PubMed  CAS  Google Scholar 

  • Mermall V, Post PL, Mooseker MS (1998) Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 279:527–533.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf AB (1998) Immunolocalization of myosin Ibeta in the hair cell’s hair bundle. Cell Motil Cytoskel 39:159–165.

    Article  CAS  Google Scholar 

  • Meyer J, Furness DN, Zenner HP, Hackney CM, Gummer AW (1998) Evidence for opening of hair-cell transducer channels after tip-link loss. J Neurosci 18:6748–6756.

    PubMed  CAS  Google Scholar 

  • Meyer J, Mack AF, Gummer AW (2001) Pronounced infracuticular endocytosis in mammalian outer hair cells. Hear Res 161:10–22.

    Article  PubMed  CAS  Google Scholar 

  • Mulroy MJ, Williams RS (1987) Auditory stereocilia in the alligator lizard. Hear Res 25:11–21.

    Article  PubMed  CAS  Google Scholar 

  • Munyer PD, Schulte BA (1994) Immunohistochemical localization of keratan sulfate and chondroitin 4-and 6-sulfate proteoglycans in subregions of the tectorial and basilar membranes. Hear Res 79:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Nagel G, Neugebauer D-Ch, Schmidt B and Thurm U (1991) Structures transmitting stimulatory force to the sensory hairs of vestibular ampullae of fishes and frog. Cell Tissue Res 265:567–578.

    Article  Google Scholar 

  • Nagerl UV, Novo D, Mody I, Vergara JL (2000) Binding kinetics of calbindin-D28k determined by flash photolysis of caged Ca2+. Biophys J 79:3009–3018.

    PubMed  CAS  Google Scholar 

  • Neugebauer D-Ch, Thurm U (1984) Chemical dissection of stereovilli from fish inner ear reveals differences from intestinal microvilli. J Neurocytol 13:797–808.

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer D-C, Thurm U (1985) Interconnections between the stereovilli of the fish inner ear. Cell Tissue Res 240:449–453.

    Article  Google Scholar 

  • Neugebauer D-C, Thurm U (1987) Surface charges of the membrane and cell adhesion substances determine the structural integrity of hair bundles from the inner ear of fish. Cell Tissue Res 249:199–207.

    Article  Google Scholar 

  • Nicolson T, Rusch A, Friedrich RW, Granato M, Ruppersberg JP, Nusslein-Volhard C (1998) Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20:271–283.

    Article  PubMed  CAS  Google Scholar 

  • Nishida Y, Fujimoto T, Takagi A, Honjo I, Ogawa K (1993) Fodrin is a constituent of the cortical lattice in outer hair cells of the guinea pig cochlea: immunocytochemical evidence. Hear Res 65:274–280.

    Article  PubMed  CAS  Google Scholar 

  • Oberholtzer JC, Buettger C, Summers MC, Matschinsky FM (1988) The 28-kDa calbindin-D is a major calcium-binding protein in the basilar papilla of the chick. Proc Natl Acad Sci USA 85:3387–3390.

    Article  PubMed  CAS  Google Scholar 

  • Ogata Y, Slepecky NB (1995) Immunocytochemical comparison of posttranslationally modified forms of tubulin in the vestibular end-organs of the gerbil: tyrosinated, acetylated and polyglutamylated tubulin. Hear Res 86:125–131.

    Article  PubMed  CAS  Google Scholar 

  • Ogata Y, Slepecky NB (1998) Immunocytochemical localization of calmodulin in the vestibular end-organs of the gerbil. J Vestib Res 8:209–216.

    Article  PubMed  CAS  Google Scholar 

  • Oliver TN, Berg JS, Cheney RE (1999) Tails of unconventional myosins. Cell Mol Life Sci 56:243–257.

    Article  PubMed  CAS  Google Scholar 

  • Osborne MP, Comis SD (1990) Action of elastase, collagenase and other enzymes upon linkages between stereocilia in the guinea-pig cochlea. Acta Otolaryngol 110:37–45.

    PubMed  CAS  Google Scholar 

  • Osborne MP, Comis SD, Pickles JO (1984) Morphology and cross-linkage of stereocilia in the guinea-pig labyrinth examined without the use of osmium as a fixative. Cell Tissue Res 237:43–48.

    PubMed  CAS  Google Scholar 

  • Osborne MP, Comis SD, Pickles JO (1988) Further observations on the fine structure of tip links between stereocilia of the guinea pig cochlea. Hear Res 35:99–108.

    Article  PubMed  CAS  Google Scholar 

  • Oshima T, Okabe S, Hirokawa N (1992) Immunocytochemical localization of 205 kDa microtubule-associated protein (205 kDa MAP) in the guinea pig organ of Corti. Brain Res 590:53–65.

    Article  PubMed  CAS  Google Scholar 

  • Pacaud M, Derancourt J (1993) Purification and further characterization of macrophage 70-kDa protein, a calcium-regulated, actin-binding protein identical to L-plastin. Biochemistry 32:3448–3455.

    Article  PubMed  CAS  Google Scholar 

  • Pack AK, Slepecky NB (1995) Cytoskeletal and calcium-binding proteins in the mammalian organ of Corti: cell type-specific proteins displaying longitudinal and radial gradients. Hear Res 91:119–135.

    Article  PubMed  CAS  Google Scholar 

  • Parsons TD, Lenzi D, Almers W, Roberts WM (1994) Calcium-triggered exocytosis and endocytosis in an isolated presynaptic cell: capacitance measurements in saccular hair cells. Neuron 13:875–883.

    Article  PubMed  CAS  Google Scholar 

  • Pataky F, Pironkova R, Hudspeth AJ (2004) Radixin is a constituent of stereocilia in hair cells. Proc Natl Acad Sci USA 101:2601–2606.

    Article  PubMed  CAS  Google Scholar 

  • Pauls TL, Cox JA, Berchtold MW (1996) The Ca2+-binding proteins parvalbumin and oncomodulin and their genes: new structural and functional findings. Biochim Biophys Acta 1306:39–54.

    PubMed  Google Scholar 

  • Perry B, Jensen-Smith HC, Luduena RF, Hallworth R (2003) Selective expression of beta tubulin isotypes in gerbil vestibular sensory epithelia and neurons. J Assoc Res Otolaryngol 4:329–338.

    Article  PubMed  Google Scholar 

  • Pickles JO (1993a) A model for the mechanics of the stereociliar bundle on acousticolateral hair cells. Hear Res 68:159–172.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO (1993b) An analysis of actin isoforms expressed in hair-cell enriched fractions of the chick basilar papilla by the polymerase chain reaction technique. Hear Res 71:225–229.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Corey DP (1992) Mechanoelectrical transduction by hair cells. Trends Neurosci 15:254–259.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15:103–112.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Brix J, Comis SD, Gleich O, Köppl C, Manley GA, Osborne MP (1989) The organization of tip links and stereocilia on hair cells of bird and lizard basilar papillae. Hear Res 41:31–41.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Brix J, Manley GA (1990) Influence of collagenase on tip links in hair cells of the chick basilar papilla. Hear Res 50:139–143.

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Billieux-Hawkins DA, Rouse GW (1996) The incorporation and turnover of radiolabelled amino acids in developing stereocilia of the chick cochlea. Hear Res 101:45–54.

    Article  PubMed  CAS  Google Scholar 

  • Probst FJ, Fridell RA, Raphael Y, Saunders TL, Wang A, Liang Y, Morell RJ, Touchman JW, Lyons RH, Noben-Trauth K, Friedman TB, Camper SA (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science 280:1444–1447.

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Fettiplace R (1997) The effects of calcium buffering and cyclic AMP on mechanoelectrical transduction in turtle auditory hair cells. J Physiol 501:111–124.

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Wu YC, Fettiplace R (1998) The endogenous calcium buffer and the time course of transducer adaptation in auditory hair cells. J Neurosci 18:8261–8277.

    PubMed  CAS  Google Scholar 

  • Ricci AJ, Gray-Keller M, Fettiplace R ( 2000) Tonotopic variations of calcium signalling in turtle auditory hair cells. J Physiol 524:423–436.

    Article  PubMed  CAS  Google Scholar 

  • Richardson GP, Russell IJ, Wasserkort R, Hans M (1988) Aminoglycoside antibiotics and lectins cause irreversible increases in the stiffness of cochlear hair cell stereocilia In: Wilson JP, Kemp DT (eds), Cochlear Mechanisms. London: Plenum, pp. 57–65.

    Google Scholar 

  • Richardson GP, Bartolami S, Russell IJ (1990) Identification of a 275-kD protein associated with the apical surfaces of sensory hair cells in the avian inner ear. J Cell Biol 110:1055–1066.

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM (1993) Spatial calcium buffering in saccular hair cells. Nature 363:74–76.

    Article  PubMed  CAS  Google Scholar 

  • Roberts WM (1994) Localization of calcium signals by a mobile calcium buffer in frog saccular hair cells. J Neurosci 14:3246–3262.

    PubMed  CAS  Google Scholar 

  • Rogers JH (1989) Two calcium-binding proteins mark many chick sensory neurons. Neuroscience 31:697–709.

    Article  PubMed  CAS  Google Scholar 

  • Rowe MH, Peterson EH (2004) Quantitative analysis of stereociliary arrays on vestibular hair cells. Hear Res 190:10–24.

    Article  PubMed  Google Scholar 

  • Rüsch A, Lysakowski A, Eatock RA (1998) Postnatal development of type I and type II hair cells in the mouse utricle: acquisition of voltage-gated conductances and differentiated morphology. J Neurosci 18:7487–7501.

    PubMed  Google Scholar 

  • Russell IJ, Richardson GP, Cody AR (1986) Mechanosensitivity of mammalian auditory hair cells in vitro. Nature 321:517–519.

    Article  PubMed  CAS  Google Scholar 

  • Rzadzinska AK, Schneider ME, Davies C, Riordan GP, Kachar B (2004) An actin molecular treadmill and myosins maintain stereocilia functional architecture and selfrenewal. J Cell Biol 164:887–897.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi N, Henzl MT, Thalmann I, Thalmann R, Schulte BA (1998) Oncomodulin is expressed exclusively by outer hair cells in the organ of Corti. J Histochem Cytochem 46:29–40.

    PubMed  CAS  Google Scholar 

  • Santi PA, Anderson CB (1987) A newly identified surface coat on cochlear hair cells. Hear Res 27:47–65.

    Article  PubMed  CAS  Google Scholar 

  • Sato M, Schwarz WH, Pollard TD (1987) Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. Nature 325:828–830.

    Article  PubMed  CAS  Google Scholar 

  • Schneider ME, Belyantseva IA, Azevedo RB, Kachar B (2002) Rapid renewal of auditory hair bundles. Nature 418:837–838.

    Article  PubMed  CAS  Google Scholar 

  • Schulman H, Lou LL (1989) Multifunctional Ca2+/calmodulin-dependent protein kinase: domain structure and regulation. Trends Biochem Sci 14:62–66.

    Article  PubMed  CAS  Google Scholar 

  • Schulte CC, Meyer J, Furness DN, Hackney CM, Kleymann TR, Gummer AW (2002) Functional effects of a monoclonal antibody on mechanoelectrical transduction in outer hair cells. Hear Res 164:190–205.

    Article  PubMed  Google Scholar 

  • Sekerková G, Zheng L, Loomis PA, Changyaleket B, Whitlon DS, Mugnaini E, Bartles JR (2004) Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells. J Neurosci 24:5445–5456.

    Article  PubMed  CAS  Google Scholar 

  • Self T, Sobe T, Copeland NG, Jenkins NA, Avraham KB, Steel KP (1999) Role of myosin VI in the differentiation of cochlear hair cells. Dev Biol 214:331–341.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM, Barres BA, Corey DP (1989) “Bundle blot” purification and initial protein characterization of hair cell stereocilia. Proc Natl Acad Sci USA 86:4973–4977.

    Article  PubMed  CAS  Google Scholar 

  • Shepherd GM, Corey DP, Block SM (1990) Actin cores of hair-cell stereocilia support myosin motility. Proc Natl Acad Sci USA 87:8627–8631.

    Article  PubMed  CAS  Google Scholar 

  • Shotwell SL, Jacobs R, Hudspeth AJ (1981) Directional sensitivity of individual vertebrate hair cells to controlled deflection of their hair bundles. Ann NY Acad Sci 374:1–10.

    PubMed  CAS  Google Scholar 

  • Siemens J, Kazmierczak P, Reynolds A, Sticker M, Littlewood-Evans A, Muller U (2002) The Usher syndrome proteins cadherin 23 and harmonin form a complex by means of PDZ-domain interactions. Proc Natl Acad Sci USA 99:14946–14951.

    Article  PubMed  CAS  Google Scholar 

  • Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Müller U (2004) Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 428:950–954.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Chamberlain SC (1982a) Distribution and polarity of actin in the sensory hair cells of the chinchilla cochlea. Cell Tissue Res 224:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Chamberlain SC (1982b) Actin in cochlear hair cells-implications for stereocilia movement. Arch Otorhinolaryngol 234:131–134.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Chamberlain SC (1985a) The cell coat of inner ear sensory and supporting cells as demonstrated by ruthenium red. Hear Res 17:281–288.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Chamberlain SC (1985b) Immunoelectron microscopic and immunofluorescent localization of cytoskeletal and muscle-like contractile proteins in inner ear sensory hair cells. Hear Res 20:245–260.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Savage JE (1994) Expression of actin isoforms in the guinea pig organ of Corti: muscle isoforms are not detected. Hear Res 73:16–26.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Ulfendahl M (1992) Actin-binding and microtubule-associated proteins in the organ of Corti. Hear Res 57:201–215.

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Ulfendahl M (1993) Evidence for calcium-binding proteins and calciumdependent regulatory proteins in sensory cells of the organ of Corti. Hear Res 70:73–84

    Article  PubMed  CAS  Google Scholar 

  • Slepecky NB, Hozza MJ, Cefaratti L (1990) Intracellular distribution of actin in cells of the organ of Corti: a structural basis for cell shape and motility. J Electron Microsc Tech 15:280–292.

    Article  PubMed  CAS  Google Scholar 

  • Sobin A, Flock Å (1983) Immunohistochemical identification and localization of actin and fimbrin in vestibular hair cells in the normal guinea pig and in a strain of the waltzing guinea pig. Acta Otolaryngol 96:407–412.

    PubMed  CAS  Google Scholar 

  • Sobue K, Kanda K, Adachi J, Kakiuchi S (1983) Calmodulin-binding proteins that interact with actin filaments in a Ca2+-dependent flip-flop manner: survey in brain and secretory tissues. Proc Natl Acad Sci USA 80:6868–6871.

    Article  PubMed  CAS  Google Scholar 

  • Sollner C, Rauch G-J, Siemens J (2004) Mutations in cadherin 23 affect tip links in zebrafish sensory hair cells. Nature 428:955–959.

    Article  PubMed  CAS  Google Scholar 

  • Stacey DJ, McLean WG (2000) Cytoskeletal protein mRNA expression in the chick utricle after treatment in vitro with aminoglycoside antibiotics: effects of insulin, iron chelators and cyclic nucleotides. Brain Res 871:319–332.

    Article  PubMed  CAS  Google Scholar 

  • Steel KP, Kros CJ (2001) A genetic approach to understanding auditory function. Nat Genet 27:143–149.

    Article  PubMed  CAS  Google Scholar 

  • Steyger PS, Furness DN, Hackney CM, Richardson GP (1989) Tubulin and microtubules in cochlear hair cells: comparative immunocytochemistry and ultrastructure. Hear Res 42:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Steyger PS, Gillespie PG, Baird RA (1998) Myosin Ibeta is located at tip link anchors in vestibular hair bundles. J Neurosci 18:4603–4615.

    PubMed  CAS  Google Scholar 

  • Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19:390–394.

    Article  PubMed  CAS  Google Scholar 

  • Tachibana M, Morioka H, Machino M, Amagai T, Mizukoshi O (1986) Aminoglycoside binding sites in the cochlea as revealed by neomycin-gold labelling. Histochemistry 85:301–304.

    Article  PubMed  CAS  Google Scholar 

  • Takumida M, Wersäll J, Bägger-Sjöbäck D (1988) Stereociliary glycocalyx and interconnections in the guinea pig vestibular organs. Acta Otolaryngol 106:130–139.

    PubMed  CAS  Google Scholar 

  • Takumida M, Harada Y, Kanemia Y (1993) Influence of elastase and hyaluronidase on the ciliary interconnecting systems in frog vestibular sensory cells. ORL J Otorhinolaryngol Relat Spec 55:77–83.

    PubMed  CAS  Google Scholar 

  • Tang J, Taylor DW, Taylor KA (2001) The three-dimensional structure of alpha-actinin obtained by cryoelectron microscopy suggests a model for Ca(2+)-dependent actin binding. J Mol Biol 310:845–858.

    Article  PubMed  CAS  Google Scholar 

  • Thalmann I, Shibasaki O, Comegys TH, Henzl MT, Senarita M, Thalmann R (1995) Detection of a beta-parvalbumin isoform in the mammalian inner ear. Biochem Biophys Res Commun 215:142–147.

    Article  PubMed  CAS  Google Scholar 

  • Thorne PR, Carlisle L, Zajic G, Schacht J, Altschuler RA (1987) Differences in the distribution of F-actin in outer hair cells along the organ of Corti. Hear Res 30:253–265.

    Article  PubMed  CAS  Google Scholar 

  • Thurm U (1981) Mechano-electric transduction. Biophys Struct Mech 7:245–246.

    Article  Google Scholar 

  • Tilney LG, DeRosier DJ (1986) Actin filaments, stereocilia, and hair cells of the bird cochlea. IV. How the actin filaments become organized in developing stereocilia and in the cuticular plate. Dev Biol 116:119–129.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 96:807–821.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Tilney MS (1988) The actin filament content of hair cells of the bird cochlea is nearly constant even though the length, width, and number of stereocilia vary depending on the hair cell location. J Cell Biol 107:2563–2574.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Derosier DJ, Mulroy MJ (1980) The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol 86:244–259.

    Article  PubMed  CAS  Google Scholar 

  • Tilney LG, Egelman EH, DeRosier DJ, Saunder JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. II. Packing of actin filaments in the stereocilia and in the cuticular plate and what happens to the organization when the stereocilia are bent. J Cell Biol 96:822–834.

    Article  PubMed  CAS  Google Scholar 

  • Tilney MS, Tilney LG, Stephens RE, Merte C, Drenckhahn D, Cotanche DA, Bretscher A (1989) Preliminary biochemical characterization of the stereocilia and cuticular plate of hair cells of the chick cochlea. J Cell Biol 109:1711–1723.

    Article  PubMed  CAS  Google Scholar 

  • Tousson A, Alley CD, Sorscher EJ, Brinkley BR, Benos DJ (1989) Immunochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia. J Cell Sci 93:349–362.

    PubMed  CAS  Google Scholar 

  • Tsuprun V, Santi P (1998) Structure of outer hair cell stereocilia links in the chinchilla. J Neurocytol 27:517–528.

    Article  PubMed  CAS  Google Scholar 

  • Tsuprun V, Santi P (2000) Helical structure of hair cell stereocilia tip links in the chinchilla cochlea. J Assoc Res Otolaryngol 1:224–231.

    Article  PubMed  CAS  Google Scholar 

  • Tsuprun V, Santi P (2002) Structure of outer hair cell stereocilia side and attachment links in the chinchilla cochlea. J Histochem Cytochem 50:493–502.

    PubMed  CAS  Google Scholar 

  • Tucker TR, Fettiplace R (1996) Monitoring calcium in turtle hair cells with a calciumactivated potassium channel. J Physiol 494:613–626.

    PubMed  CAS  Google Scholar 

  • Unwin N (1989) The structure of ion channels in the membrane of excitable cells. Neuron 3:665–676.

    Article  PubMed  CAS  Google Scholar 

  • Unwin N (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett 555:91–95.

    Article  PubMed  CAS  Google Scholar 

  • Velichkova M, Guttman J, Warren C, Eng L, Kline K, Vogl AW, Hasson T (2002) A human homologue of Drosophila kelch associates with myosin-VIIa in specialized adhesion junctions. Cell Motil Cytoskel 51:147–164.

    Article  CAS  Google Scholar 

  • Wagner O, Zinke J, Dancker P, Grill W, Bereiter-Hahn J (1999) Viscoelastic properties of f-actin, microtubules, f-actin/alpha-actinin, and f-actin/hexokinase ddetermined in microliter volumes with a novel non-destructive method. Biophys J 76:2784–2796.

    Article  PubMed  CAS  Google Scholar 

  • Walker RG, Hudspeth AJ (1996) Calmodulin controls adaptation of mechanoelectrical transduction by hair cells of the bullfrog’s sacculus. Proc Natl Acad Sci USA 93:2203–2207.

    Article  PubMed  CAS  Google Scholar 

  • Walker RG, Hudspeth AJ, Gillespie PG (1993) Calmodulin and calmodulin-binding proteins in hair bundles. Proc Natl Acad Sci USA 90:2807–2811.

    Article  PubMed  CAS  Google Scholar 

  • Walsh T, Walsh V, Vreugde S, Hertzano R, Shahin H, Haika S, Lee MK, Kanaan M, King M-C, Avraham KB (2002) From flies’ eyes to our ears: mutations in a human class III myosin cause progressive on-syndromic hearing loss DFNB30. Proc Natl Acad Sci USA 99:7518–7523.

    Article  PubMed  CAS  Google Scholar 

  • Warchol ME (2001) Lectin from Griffonia simplicifolia identifies an immature-appearing subpopulation of sensory hair cells in the avian utricle. J Neurocytol 30:253–264.

    Article  PubMed  CAS  Google Scholar 

  • Wu X, Jung G, Hammer JA 3rd (2000) Functions of unconventional myosins. Curr Opin Cell Biol 12:42–51.

    Article  PubMed  CAS  Google Scholar 

  • Wu YC, Ricci AJ, Fettiplace R (1999) Two components of transducer adaptation in auditory hair cells. J Neurophysiol 82:2171–2181.

    PubMed  CAS  Google Scholar 

  • Yamoah EN, Lumpkin EA, Dumont RA, Smith PJ, Hudspeth AJ, Gillespie PG (1998) Plasma membrane Ca2+-ATPase extrudes Ca2+ from hair cell stereocilia. J Neurosci 18:610–624.

    PubMed  CAS  Google Scholar 

  • Yang D, Thalmann I, Thalmann R, Simmons DD (2004) Expression of alpha and beta parvalbumin is differentially regulated in the rat organ of Corti during development. J Neurobiol 58:479–492.

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Yamoah EN, Gillespie PG (1996) Regeneration of broken tip links and restoration of mechanical transduction in hair cells. Proc Natl Acad Sci USA 93:15469–15474.

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Sekerkova G, Vranich K, Tilney LG, Mugnaini E, Bartles JR (2000) The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102:377–385.

    Article  PubMed  CAS  Google Scholar 

  • Zine EA, Romand R (1993) Expression of alpha-actinin in the stereocilia of hair cells of the inner ear: immunohistochemical localization. NeuroReport 4:1350–1352.

    PubMed  CAS  Google Scholar 

  • Zine A, Hafidi A, Romand R (1995) Fimbrin expression in the developing rat cochlea. Hear Res 87:165–169.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Furness, D.N., Hackney, C.M. (2006). The Structure and Composition of the Stereociliary Bundle of Vertebrate Hair Cells. In: Eatock, R.A., Fay, R.R., Popper, A.N. (eds) Vertebrate Hair Cells. Springer Handbook of Auditory Research, vol 27. Springer, New York, NY. https://doi.org/10.1007/0-387-31706-6_3

Download citation

Publish with us

Policies and ethics