Skip to main content

Bio-Inspired Computing Machines with Artificial Division and Differentiation

  • Chapter
  • 705 Accesses

Part of the book series: Genetic and Evolutionary Computation ((GEVO))

Abstract

In order to design computing machines able to self-repair and self-replicate, we have borrowed from nature two major mechanisms which are embedded in silicon: cell division and cell differentiation. Based on the so-called Tom Thumb algorithm, cellular division leads to a novel self-replicating loop endowed with universal construction. The self-replication of the totipotent cell of the “LSL” acronym serves as an artificial cell division example of the loop and results in the growth and differentiation of a multicellular organism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Campbell, N. A., J. B. Reece and L. G. Mitchell. 1999. Biology, 5th edition. Menlo Park, CA: Benjamin/Cummings.

    Google Scholar 

  • Chou, H.-H. and J. A. Reggia. 1998. “Problem solving during artificial selection of self-replicating loops”, Physica D, Vol. 115, No. 3–4, 1998, 293–312.

    Article  MATH  Google Scholar 

  • Drexler, K. E. 1992. Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York, NY: John Wiley.

    Google Scholar 

  • Heath, J. R., et al. 1998. “A defect-tolerant computer architecture: opportunities for nanotechnology”, Science, Vol. 280, No. 5370, June 1998, 1716–1721.

    Article  Google Scholar 

  • Imai, K., T. Hori and K. Morita. 2002. “Self-Reproduction in Three-Dimensional Reversible Cellular Space”, Artificial Life, Vol. 8, No. 2, 2002, 155–174.

    Article  Google Scholar 

  • Macias, N. J. and L. J. K. Durbeck. 2002. “Self-reproduction in asynchronous cellular automaton”, Proceedings of the 2002 NASA/DOD Workshop Conference on Evolvable Hardware, IEEE Computer Society Press, 2002, 46–55.

    Google Scholar 

  • Mange, D., et al. 2000. “Toward Robust Integrated Circuits: The Embryonics Approach”. In Proceedings of the IEEE, Vol. 88, No. 4, April 2000, 516–541.

    Article  Google Scholar 

  • Mange, D., et al. 2004. “Embryonics Machines that Divide and Differentiate”. In Proceedings of the First International Workshop Bio-ADIT 2004, Lecture Notes in Computer Science, Springer-Verlag 2004, 201–216.

    Google Scholar 

  • Mange, D., et al. 2004. “Self-replicating loop with universal construction”, Physica D, Vol. 191, No. 1–2, April 2004, 178–192.

    Article  MATH  MathSciNet  Google Scholar 

  • Nehaniv, C. L. 2002. “Self-reproduction in asynchronous cellular automaton”. In Proceedings of the 2002 NASA/DOD Workshop Conference on Evolvable Hardware, IEEE Computer Society Press, 2002, 201–209.

    Google Scholar 

  • Sipper, M., et al. 1997. “A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems”, IEEE Transactions on Evolutionary Computation, Vol. 1, No. 1, 1997, 83–97.

    Article  Google Scholar 

  • Stauffer, A. and M. Sipper. 2004. “The data-and-signals cellular automaton and its application to growing structures”, Artificial Life, Vol. 10, No. 4, 2004, 463–477.

    Article  Google Scholar 

  • Tempesti, G. 1995. “A New Self-Reproducing Cellular Automaton Capable of Construction and Computation”. In Proceedings of the Third European Conference on Artificial Life ECAL’95, Lecture Notes in Computer Science, Springer-Verlag, 555–563.

    Google Scholar 

  • Tempesti, G. and C. Teuscher. 2003. “Biology Goes Digital”, Xcell Journal, No. 47, Fall 2003, 40–45.

    Google Scholar 

  • Villasenor, J. and W. H. Mangione-Smith. 1997. “Configurable Computing”, Scientific American, Vol. 276, No. 6, June 1997, 54–59.

    Article  Google Scholar 

  • von Neumann, J. 1966. Theory of Self-Reproducing Automata. Illinois, MI: University of Illinois Press.

    MATH  Google Scholar 

  • Watson, J. D. and F. H. C. Crick. 1953. “A structure for desoxyribose nucleid acid”, Nature, Vol. 171, 1953, 737–738.

    Article  Google Scholar 

  • Watson, J. D., et al. 1987. Molecular Biology of the Gene. Menlo Park, CA: Benjamin/Cummings Publishing Company.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Mange, D., Stauffer, A., Tempesti, G., Vannel, F., Badertscher, A. (2006). Bio-Inspired Computing Machines with Artificial Division and Differentiation. In: Higuchi, T., Liu, Y., Yao, X. (eds) Evolvable Hardware. Genetic and Evolutionary Computation. Springer, Boston, MA . https://doi.org/10.1007/0-387-31238-2_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-31238-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24386-3

  • Online ISBN: 978-0-387-31238-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics