Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

12. References

  1. Pasumarthi, K.B. and Field, L.J. Cardiomyocyte cell cycle regulation. Circ. Res. 2002; 90: 1004–1054.

    Article  Google Scholar 

  2. Chien, K.R. and Olson, E.N. Converging pathways and principles in heart development and disease. Cell. 2002; 110: 153–162.

    Article  Google Scholar 

  3. Rosenthal, N. Prometheus’s vulture and the stem cell promise. N. Engl. J. Med. 2003; 346: 5–15.

    Google Scholar 

  4. Linzbach, A.J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol. 1960; 5: 370–382.

    Article  Google Scholar 

  5. Rumyantsev, P.P. DNA synthesis and nuclear division in embryonical and postnatal histogenesis of myocardium. Arch. Anat. 1964; 47: 59–65.

    Google Scholar 

  6. Anderson, D.J. Gage, F.H. and Weissman, I.L. Can stem cells cross lineage boundaries? Nat. Med. 2001; 7: 393–395.

    Google Scholar 

  7. Schaper, J. Elsasser, A. and Kostin, S. The role of cell death in heart failure. Circ. Res. 1999; 85: 867–869.

    Google Scholar 

  8. Anversa, P. Myocyte death in the pathological heart. Circ. Res. 2000; 86: 121–124.

    Google Scholar 

  9. Kang, P.M. and Izumo, S. Apoptosis and heart failure: a critical review of the literature. Circ. Res. 2000; 86: 1107–1113.

    Google Scholar 

  10. Nadal-Ginard, B., Kajstura, J., Leri, A. and Anversa, P. Myocyte death, growth, growth and regeneration in cardiac hypertrophy and failure. Circ. Res. 2003; 92: 139–150.

    Article  Google Scholar 

  11. Anversa, P. and Nadal-Ginard, B. Myocyte renewal and ventricular remodeling. Nature, 2002; 415: 240–243.

    Article  Google Scholar 

  12. Nadal-Ginard, B., Kajstura, J., Anversa, P. and Leri, A. A matter of life and death: cardiac myocyte apoptosis and regeneration. J. Clin. Invest. 2003; 111: 1457–1459.

    Article  Google Scholar 

  13. Anversa P. and Kajstura, J. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ. Res. 1998; 83: 1–14.

    Google Scholar 

  14. Chimenti, C., Kajstura, J., Torella, D., Urbanek, K., Heleniak, H., Colussi, C., Di Meglio, F., Nadal-Ginard, B., Frustaci, A., Leri, A., Maseri, A. and Anversa, P. Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure. Circ. Res. 2003; 93: 604–613.

    Article  Google Scholar 

  15. Beltrami, A. P. Urbanek, K., Kajstura, J., Yan, S. M., Finato, N., Bussani, R., Nadal-Ginard, B., Silvestri, F., Leri, A., Beltrami, C. A. and Anversa, P. Evidence that human cardiocytes divide after myocardial infarction. N. Engl. J. Med. 2001; 344: 1750–1757.

    Article  Google Scholar 

  16. Urbanek, K., Quaini, F., Tasca, G., Torella, D., Castaldo, C., Nadal-Ginard, B., Leri, A., Kajstura, J., Quaini, E. and Anversa, P. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 10440–10445.

    Article  Google Scholar 

  17. Leri, A., Barlucchi, L., Limana, F., Deptala, A., Darzynkiewicz, Z., Hintze, T. H., Kajstura, J., Nadal-Ginard, B. and P. Anversa. Telomerase expression and activity are coupled with myocyte proliferation and preservation of telomeric length in the failing heart. Proc. Natl. Acad. Sci. USA. 2001; 98: 8626–8631.

    Article  Google Scholar 

  18. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., Kajstura, J., Leri, A. and Anversa, P. Chimerism of the transplanted heart. N. Engl. J. Med. 2002. 346: 5–15.

    Article  Google Scholar 

  19. Ferrari G., Cusella-De Angelis G., Coletta M., Paolucci E., Stornaiuolo A., Cossu G. and Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998; 279: 1528–1530.

    Article  Google Scholar 

  20. Lagasse E., Connors H., Al-Dhalimy M., Reitsma M., Dohse M., Osborne L., Wang X., Finegold M., Weissman I.L. and Grompe M. Hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 2000; 6: 1229–1234.

    Article  Google Scholar 

  21. Brazelton T.R., Rossi F.M., Keshet G.I. and Blau H.M. From marrow to brain: expression of neuronal phenotypes in adult mice. Science. 2000; 290: 1775–1779.

    Article  Google Scholar 

  22. Mezey, E., Chandross, K.J., Harta, G., Maki, R.A. and McKercher, S.R. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000; 290: 1779–1782.

    Article  Google Scholar 

  23. Krause D.S., Theise N.D., Collector M.I., Henegariu O., Hwang S., Gardner R., Neutzel S. and Sharkis S.J. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001; 105: 369–377.

    Article  Google Scholar 

  24. Orlic, D., Kajstura, J., Chimenti, S., Jakonuik, I., Li, B. Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D., Leri, A. and Anversa, P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001; 410: 701–705.

    Article  Google Scholar 

  25. Balsam, L.B., Wagers, A.J., Christensen, J.L., Kofidis, T., Weissman, I.L. and Robbins, R.C. Hematopoietic stem cells adopt mature hematopoietic fates in ischemic myocardium. Nature. 2004; 428: 668–673.

    Article  Google Scholar 

  26. Murry, C.E., Soonpaa, M.H., Reinecke, H., Nakajima, H.O., Rubart, M., Pasumarthi, K.B., Virag, J.I., Bartelmez, S.S., Poppa, V., Bradford, G., Dowell, J.D., Williams, D.A. and Field, L.J. Hematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004; 428: 664–668.

    Article  Google Scholar 

  27. Kajstura, J., Rota, M., Whang, B., Cascapera, S., Hosoda, T., Bearzi, C., Nurzynska, D., Kasahara, H., Zias, E., Bonafe, M., Nadal-Ginard, B., Torella, D., Nascimbene, A., Quaini, F., Urbanek, K., Leri, A. and Anversa, P. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. Published online November 29, 2004.

    Google Scholar 

  28. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., Nadal-Ginard, B., Bodine, D., Leri, A. and Anversa, P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA. 2001; 98: 10344–10349.

    Article  Google Scholar 

  29. Urbich C. and Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004; 95: 343–53.

    Article  Google Scholar 

  30. Bodine, D. M., Seidel, N. E., Gale, M. S., Nienhuis, A. W. and Orlic, D. Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colony-stimulating factor and stem cell factor. Blood. 1994; 84: 1482–1491.

    Google Scholar 

  31. Laflamme M.A., Meyerson D., Saffitz J.E. and Murry, C.E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 2002; 90: 634–640.

    Article  Google Scholar 

  32. Müller P., Pfeiffer P., Koglin J., Schafers, H.J., Seeland, U., Janzen, I., Urbschat, S. and Bohm, M. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation. 2002; 105: 31–35.

    Google Scholar 

  33. Glaser R., Lu M.M., Narula N. and Epstein, J.A. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation. 2002; 106: 17–19.

    Article  Google Scholar 

  34. Bayes-Genis A., Salido M., Sole Ristol F., Puig M., Brossa V., Camprecios M., Corominas J.M., Marinoso M.L., Baro T., Vela M.C., Serrano S., Padro J.M., Bayes de Luna A. and Cinca J. Host cell-derived cardiomyocytes in sex-mismatch cardiac allografts. Cardiovasc. Res. 2002; 56: 404–410.

    Article  Google Scholar 

  35. Anversa, P. and Nadal-Ginard, B. Cardiac chimerism: methods matter. Circulation. 2002; 106: e129–e131.

    Article  Google Scholar 

  36. Deb A., Wang S., Skelding K.A., Miller D., Simper D. and Caplice N.M. Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation. 2003; 107: 1247–1249.

    Article  Google Scholar 

  37. Thiele J., Varus E., Wickenhauser C., Kvasnicka H.M., Lorenzen J., Gramley F., Metz K.A., Rivero F. and Beelen D.W. Mixed chimerism of cardiomyocytes and vessels after allogeneic bone marrow and stem-cell transplantation in comparison with cardiac allografts. Transplantation. 2004; 77: 1902–1905.

    Article  Google Scholar 

  38. Soukiasian H.J., Czer L.S., Avital I., Aoki T., Kim Y.H., Umehara Y., Pass J., Tabrizi R., Magliato K., Fontana G.P., Cheng W., Demetriou A.A. and Trento A. A novel sub-population of bone marrow-derived myocardial stem cells: potential autologous cell therapy in myocardial infarction. J. Heart Lung Transplant. 2004; 23: 873–880.

    Google Scholar 

  39. Bayes-Genis A., Muniz-Diaz E., Catasus L., Arilla M., Rodriguez C., Sierra J., Madoz P.J. and Cinca J. Cardiac chimerism in recipients of peripheral-blood and bone marrow stem cells. Eur. J. Heart Fail. 2004; 6: 399–402.

    Google Scholar 

  40. Thiele J., Varus E., Wickenhauser C., Kvasnicka H.M., Metz K.A. and Beelen D.W. Regeneration of heart muscle tissue: quantification of chimeric cardiomyocytes and endothelial cells following transplantation. Histol. Histopathol. 2004; 19: 201–209.

    Google Scholar 

  41. Chien, K.R. Stem cells: lost in translation. Nature. 2004; 428: 607–608.

    Google Scholar 

  42. Reynolds, B.A. and Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science. 1992; 255: 1707–1710.

    Google Scholar 

  43. Gritti, A., Parati, E.A., Cova, L., Frolichsthal, P., Galli, R., Wanke, E., Faravelli, L., Morassutti, D.J., Roisen, F., Nickel, D.D. and Vescovi, A.L. Multipotential stem cells from adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 1996; 16: 1091–1100.

    Google Scholar 

  44. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Climenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B. and Anversa, P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003; 114: 763–776.

    Article  Google Scholar 

  45. Oh H., Bradfute S.B., Gallardo T.D., Nakamura T., Gaussin V., Mishina Y., Pocius J., Michael L.H., Behringer R.R., Garry D.J., Entman M.L. and Schneider M.D. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. U.S.A. 2003; 100: 12313–12318.

    Google Scholar 

  46. Matsuura K., Nagai T., Nishigaki N., Oyama, T., Nishi, J., Wada, H., Sano, M., Toko, H., Akazawada, H., Sato, T., Nakaya, H., Kasanuki, H. and Komuro, I. Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J. Biol. Chem. 2004; 279: 11384–11391.

    Article  Google Scholar 

  47. Wagers, A.J. and Weissman, I.L. Plasticity of adult stem cells. Cell. 2004; 116: 639–648.

    Article  Google Scholar 

  48. Spangrude, G.J., Perry, S.S. and Slayton, W.B. Early stages of hematopoietic differentiation. Ann. N.Y. Acad. Sci. 2003; 996: 186–194.

    Google Scholar 

  49. Ono, K., Matsumori, A., Shioi, T., Furukawa, Y. and Sasayama S. Enhanced expression of HGF/c-Met by myocardial ischemia and reperfusion in a rat model. Circulation. 1997; 95: 2552–2558.

    Google Scholar 

  50. Torella, D., Urbanek, K., Rota, M., Nurzynska, D., Climenti, S., Barlucchi, L., Baker, M., Cascapera, S., Bearzi, C., Musso, E., Rastaldo, R., Limana, F., Nadal-Ginard, B., Leri, A., Kajstura, J. and Anversa, P. Local activation of cardiac stem cells repairs the infarcted heart and improves survival. Submitted. 2004.

    Google Scholar 

  51. Torella, D., Rota, M., Nurzynska, D., Musso, E., Monsen, A., Shiraishi, I., Zias, E., Walsh, K., Rosenzweig, A., Sussman, M.A. Urbanek, K., Nadal-Ginard, B., Kajstura, J., Anversa, P. and Leri, A. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ. Res. 2004; 94: 514–524.

    Article  Google Scholar 

  52. Leri, A., Franco, S., Zacheo, A., Barlucchi, L., Climenti, S., Limana, F., Nadal-Ginard, B., Kajstura, J., Anversa, P. and Blasco, M.A. Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J. 2003; 22: 131–139.

    Article  Google Scholar 

  53. Collins, K. and Mitchell, J.R. Telomerase in the human organism. Oncogene. 2002; 21: 564–579.

    Article  Google Scholar 

  54. Harley, C.B., Futcher, A.B. and Greider, C.W. Telomeres shorten during aging of human fibroblasts. Nature. 1990; 345: 458–460.

    Article  Google Scholar 

  55. Lee, H.W., Blasco, M.A., Gottlieb, G.J., Horner, J.W., Greider, C.W. and DePinho, R.A. Essential role of mouse telomerase in highly proliferative organs. Science. 1998; 392: 569–574.

    Google Scholar 

  56. Kang H.J., Kim H.S., Zhang S.Y., Park K.W., Cho H.J., Koo B.K., Kim Y.J., Soo Lee D., Sohn D.W., Han K.S., Oh B.H., Lee M.M. and Park Y.B. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocytecolony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet. 2004; 363: 751–756.

    Article  Google Scholar 

  57. Strauer B.E., Brehm M., Zeus T., Kostering M., Hernandez A., Sorg R.V., Kogler G. and Wernet P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002; 106: 1913–1918.

    Article  Google Scholar 

  58. Schachinger V., Assmus B., Britten M.B., Honold J., Lehmann R., Teupe C., Abolmaali N.D., Vogl T.J., Hofmann W.K., Martin H., Dimmeler S. and Zeiher A.M. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol. 2004; 44: 1690–1699.

    Article  Google Scholar 

  59. Perin E.C., Dohmann H.F., Borojevic R., Silva S.A., Sousa A.L., Mesquita C.T., Rossi M.I., Carvalho A.C., Dutra H.S., Dohmann H.J., Silva G.V., Belem L., Vivacqua R., Rangel F.O., Esporcatte R., Geng Y.J., Vaughn W.K., Assad J.A., Mesquita E.T. and Willerson J.T. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003; 107: 2294–2302.

    Google Scholar 

  60. Stamm, C., Westphal, B., Kleine, H.-D., Petzsch, M., Kittner, C., Klinge, H., Schümichen, C., Nienaber, C.A., Freund, M. and Steinhoff, G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003; 361: 45–46.

    Article  Google Scholar 

  61. Menasche P., Hagege A.A., Scorsin M., Pouzet B., Desnos M., Duboc D., Schwartz K., Vilquin J.T. and Marolleau J.P. Myoblast transplantation for heart failure. Lancet. 2001; 357: 279–280.

    Article  Google Scholar 

  62. Smits P.C., van Geuns R.J., Poldermans D., Bountioukos M., Onderwater E.E., Lee C.H., Maat A.P. and Serruys P.W. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J. Am. Coll. Cardiol. 2003; 42: 2063–2069.

    Article  Google Scholar 

  63. Pagani F.D., DerSimonian H., Zawadzka A., Wetzel K., Edge A.S., Jacoby D.B., Dinsmore J.H., Wright S., Aretz T.H., Eisen H.J. and Aaronson K.D. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J. Am. Coll. Cardiol. 2003; 41: 879–888.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Nadal-Ginard, B., Méndez-Ferrer, S. (2006). Cardiac Stem Cells for Myocardial Regeneration. In: Dib, N., Taylor, D.A., Diethrich, E.B. (eds) Stem Cell Therapy and Tissue Engineering for Cardiovascular Repair. Springer, Boston, MA. https://doi.org/10.1007/0-387-30939-X_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-30939-X_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25788-4

  • Online ISBN: 978-0-387-30939-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics