Skip to main content

Myocardial Regeneration: Which Cell and Why

  • Chapter
  • 504 Accesses

4. Conclusion

Treatment of damaged myocardium after myocardial infarction by cell transplantation is becoming an increasingly promising therapeutic approach. Ideally, the donor cells should be amplified efficiently in culture and would lead to regeneration of infarcted myocardial tissue, including cardiogenic differentiation with local angiogenesis. Two of the most widely used cell types for cardiac repair today are skeletal muscle-derived progenitors, or myoblasts, and bone marrow-derived progenitors. Both cell types share advantages over other cells used for cardiac repair (or at least for limiting infarcts) in that they are readily available, autologous, exhibit a high proliferative potential in vitro and share a low potential for tumor genesis.

However, the transplantation of autologous cells to repair the heart also has serious drawbacks. It is labor intensive since isolation and cell proliferation has to be done for each patient. This procedure also delays the treatment. The ‘ideal’ cell to treat the heart should be transplantable without delay to any patient without a sustained immunosupression. Such ideal cells may be obtained one day by the genetic engineering of embryonic stem cells.

Through cellular therapies, the concept of “growing” heart muscle and vascular tissue and manipulating the myocardial cellular environment may revolutionize the approach to treating heart disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5. References

  1. Bader, D., and Oberpriller, J. O. 1978. Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J Morphol 155: 349.

    Article  Google Scholar 

  2. Jockusch, H., Fuchtbauer, E. M., Fuchtbauer, A., Leger, J. J., Leger, J., Maldonado, C. A., and Forssmann, W. G. 1986. Long-term expression of isomyosins and myoendocrine functions in ectopic grafts of atrial tissue. Proc Natl Acad Sci U S A 83: 7325.

    Google Scholar 

  3. Soonpaa, M. H., Koh, G. Y., Klug, M. G., and Field, L. J. 1994. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264: 98.

    Google Scholar 

  4. Koh, G. Y., Soonpaa, M. H., Klug, M. G., Pride, H. P., Cooper, B. J., Zipes, D. P., and Field, L. J. 1995. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J Clin Invest 96: 2034.

    Google Scholar 

  5. Grounds, M. D., White, J. D., Rosenthal, N., and Bogoyevitch, M. A. 2002. The role of stem cells in skeletal and cardiac muscle repair. J Histochem Cytochem 50: 589.

    Google Scholar 

  6. Melo, L. G., Pachori, A. S., Kong, D., Gnecchi, M., Wang, K., Pratt, R. E., and Dzau, V. J. 2004. Gene and cell-based therapies for heart disease. Faseb J 18: 648.29.

    Article  Google Scholar 

  7. Soonpaa, M. H., Daud, A. I., Koh, G. Y., Klug, M. G., Kim, K. K., Wang, H., and Field, L. J. 1995. Potential approaches for myocardial regeneration. Ann N Y Acad Sci 752: 446.

    Google Scholar 

  8. Menasche, P., Hagege, A. A., Scorsin, M., Pouzet, B., Desnos, M., Duboc, D., Schwartz, K., Vilquin, J. T., and Marolleau, J. P. 2001. Myoblast transplantation for heart failure. Lancet 357: 279.

    Article  Google Scholar 

  9. Li, R. K., Jia, Z. Q., Weisel, R. D., Merante, F., and Mickle, D. A. 1999. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol 31: 513.

    Article  Google Scholar 

  10. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., Homma, S., Edwards, N. M., and Itescu, S. 2001. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7: 430.

    Article  Google Scholar 

  11. Orlic, D., Kajstura, J., Chimenti, S., Limana, F., Jakoniuk, I., Quaini, F., Nadal-Ginard, B., Bodine, D. M., Leri, A., and Anversa, P. 2001b. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A 98: 10344.

    Article  Google Scholar 

  12. Reinecke, H., Zhang, M., Bartosek, T., and Murry, C. E. 1999. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100: 193.

    Google Scholar 

  13. Reinlib, L., and Field, L. 2000. Cell transplantation as future therapy for cardiovascular disease?: A workshop of the National Heart, Lung, and Blood Institute. Circulation 101: E182.

    Google Scholar 

  14. Bischoff, R., and Heintz, C. 1994. Enhancement of skeletal muscle regeneration. Dev Dyn 201: 41.

    Google Scholar 

  15. Skuk, D., Roy, B., Goulet, M., Chapdelaine, P., Bouchard, J. P., Roy, R., Dugre, F. J., Lachance, J. G., Deschenes, L., Helene, S., Sylvain, M., and Tremblay, J. P. 2004. Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 9: 475.

    Article  Google Scholar 

  16. Skuk, D., and Tremblay, J. P. 2003a. Cell therapies for inherited myopathies. Curr Opin Rheumatol 15: 723.

    Google Scholar 

  17. Skuk, D., and Tremblay, J. P. 2003b. Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. J Muscle Res Cell Motil 24: 285.

    Article  Google Scholar 

  18. Tremblay, D. S. a. J. P. 2001. “Engineering”Myoblast Transplantation. Graft 4: 558.

    Google Scholar 

  19. Tremblay, J. P., Malouin, F., Roy, R., Huard, J., Bouchard, J. P., Satoh, A., and Richards, C. L. 1993. Results of a triple blind clinical study of myoblast transplantations without immunosuppressive treatment in young boys with Duchenne muscular dystrophy. Cell Transplant 2: 99.

    Google Scholar 

  20. Atkins, B. Z., Lewis, C. W., Kraus, W. E., Hutcheson, K. A., Glower, D. D., and Taylor, D. A. 1999. Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Ann Thorac Surg 67: 124.

    Article  Google Scholar 

  21. Dorfman, J., Duong, M., Zibaitis, A., Pelletier, M. P., Shum-Tim, D., Li, C., and Chiu, R. C. 1998. Myocardial tissue engineering with autologous myoblast implantation. J Thorac Cardiovasc Surg 116: 744.

    Google Scholar 

  22. Murry, C. E., Wiseman, R.W., Schwartz, S. M., and Hauschka, S. D. 1996. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98: 2512.

    Google Scholar 

  23. Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., Glower, D. D., and Kraus, W. E. 1998. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4: 929.

    Google Scholar 

  24. Dib, N., Diethrich, E. B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., Hobohm, D.W., and Taylor, D. A. 2002. Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. J Endovasc Ther 9: 313.

    Article  Google Scholar 

  25. Suzuki, K., Smolenski, R. T., Jayakumar, J., Murtuza, B., Brand, N. J., and Yacoub, M. H. 2000. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation 102: III216.

    Google Scholar 

  26. Menasche, P. 2002. [Cell therapy: myoblast autograft]. Bull Acad Natl Med 186: 73.

    Google Scholar 

  27. Condorelli, G., Borello, U., De Angelis, L., Latronico, M., Sirabella, D., Coletta, M., Galli, R., Balconi, G., Follenzi, A., Frati, G., Cusella De Angelis, M. G., Gioglio, L., Amuchastegui, S., Adorini, L., Naldini, L., Vescovi, A., Dejana, E., and Cossu, G. 2001. Cardiomyocytes induce endothelial cells to trans-differentiate into cardiac muscle: implications for myocardium regeneration. Proc Natl Acad Sci U S A 98: 10733.

    Google Scholar 

  28. Kawamoto, A., Gwon, H. C., Iwaguro, H., Yamaguchi, J. I., Uchida, S., Masuda, H., Silver, M., Ma, H., Kearney, M., Isner, J. M., and Asahara, T. 2001. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103: 634.

    Google Scholar 

  29. Asahara, T., Masuda, H., Takahashi, T., Kalka, C., Pastore, C., Silver, M., Kearne, M., Magner, M., and Isner, J. M. 1999. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85: 221.

    Google Scholar 

  30. Rafii, S., and Lyden, D. 2003. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9: 702.

    Google Scholar 

  31. Iwaguro, H., Yamaguchi, J., Kalka, C., Murasawa, S., Masuda, H., Hayashi, S., Silver, M., Li, T., Isner, J. M., and Asahara, T. 2002. Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation 105: 732.

    Article  Google Scholar 

  32. Kalka, C., Masuda, H., Takahashi, T., Kalka-Moll, W. M., Silver, M., Kearney, M., Li, T., Isner, J. M., and Asahara, T. 2000. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97: 3422.

    Article  Google Scholar 

  33. Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M.W., Entman, M. L., Michael, L. H., Hirschi, K. K., and Goodell, M. A. 2001. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107: 1395.

    Google Scholar 

  34. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., Du, J., Aldrich, S., Lisberg, A., Low, W. C., Largaespada, D. A., and Verfaillie, C. M. 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41.

    Article  Google Scholar 

  35. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., and Anversa, P. 2001a. Bone marrow cells regenerate infarcted myocardium. Nature 410: 701.

    Article  Google Scholar 

  36. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., and Kessler, P. D. 2002. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105: 93.

    Article  Google Scholar 

  37. Blau, H. M., Brazelton, T. R., and Weimann, J. M. 2001. The evolving concept of a stem cell: entity or function? Cell 105: 829.

    Article  Google Scholar 

  38. Gao, J., Dennis, J. E., Muzic, R. F., Lundberg, M., and Caplan, A. I. 2001. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 169: 12.

    Article  Google Scholar 

  39. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R. 1999. Multilineage potential of adult human mesenchymal stem cells. Science 284: 143.

    Article  Google Scholar 

  40. Wakitani, S., Saito, T., and Caplan, A. I. 1995. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18: 1417.

    Article  Google Scholar 

  41. Hakuno, D., Fukuda, K., Makino, S., Konishi, F., Tomita, Y., Manabe, T., Suzuki, Y., Umezawa, A., and Ogawa, S. 2002. Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation 105: 380.

    Article  Google Scholar 

  42. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H., Hata, J., Umezawa, A., and Ogawa, S. 1999. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103: 697.

    Google Scholar 

  43. Tomita, S., Li, R. K., Weisel, R. D., Mickle, D. A., Kim, E. J., Sakai, T., and Jia, Z. Q. 1999. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100: II247.

    Google Scholar 

  44. Orlic, D., Hill, J. M., and Arai, A. E. 2002. Stem cells for myocardial regeneration. Circ Res 91: 1092.

    Article  Google Scholar 

  45. Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., Masaki, H., Mori, Y., Iba, O., Tateishi, E., Kosaki, A., Shintani, S., Murohara, T., Imaizumi, T., and Iwasaka, T. 2001. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104: 1046.

    Google Scholar 

  46. Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., Grunwald, F., Aicher, A., Urbich, C., Martin, H., Hoelzer, D., Dimmeler, S., and Zeiher, A. M. 2002. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation 106: 3009.

    Article  Google Scholar 

  47. Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Mesquita, C. T., Rossi, M. I., Carvalho, A. C., Dutra, H. S., Dohmann, H. J., Silva, G. V., Belem, L., Vivacqua, R., Rangel, F. O., Esporcatte, R., Geng, Y. J., Vaughn, W. K., Assad, J. A., Mesquita, E. T., and Willerson, J. T. 2003. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107: 2294.

    Google Scholar 

  48. Stamm, C., Westphal, B., Kleine, H. D., Petzsch, M., Kittner, C., Klinge, H., Schumichen, C., Nienaber, C. A., Freund, M., and Steinhoff, G. 2003. Autologous bonemarrow stem-cell transplantation for myocardial regeneration. Lancet 361: 45.

    Article  Google Scholar 

  49. Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., Kogler, G., and Wernet, P. 2002. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106: 1913.

    Article  Google Scholar 

  50. Tse, H. F., Kwong, Y. L., Chan, J. K., Lo, G., Ho, C. L., and Lau, C. P. 2003. Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet 361: 47.

    Article  Google Scholar 

  51. Koide, M., Y. Kawahara, et al. (1993). “Cyclic AMP-elevating agents Induce an inducible type of nitric oxide synthase in cultured vascular smooth muscle cells. Synergism with the induction elicited by inflammatory cytokines.” J Biol Chem 268(33): 24959–66.

    Google Scholar 

  52. Ali, N. and D. K. Agrawal (1994). “Guanine nucleotide binding regulatory proteins: their characteristics and identification.” J Pharmacol Toxicol Methods 32(4): 187–96.

    Article  Google Scholar 

  53. Stavri, G. T., I. C. Zachary, et al. (1995). “Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia.” Circulation 92(1): 11–4.

    Google Scholar 

  54. Klug, M. G., Soonpaa, M. H., Koh, G. Y., and Field, L. J. 1996. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J Clin Invest 98: 216.

    Google Scholar 

  55. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J., and Gepstein, L. 2001. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108: 407.

    Article  Google Scholar 

  56. Bradley, J. A., Bolton, E. M., and Pedersen, R. A. 2002. Stem cell medicine encounters the immune system. Nat Rev Immunol 2: 859.

    Article  Google Scholar 

  57. Grusby, M. J., Auchincloss, H., Jr., Lee, R., Johnson, R. S., Spencer, J. P., Zijlstra, M., Jaenisch, R., Papaioannou, V. E., and Glimcher, L. H. 1993. Mice lacking major histocompatibility complex class I and class II molecules. Proc Natl Acad Sci U S A 90: 3913.

    Google Scholar 

  58. Lanza, R. P., Chung, H. Y., Yoo, J. J., Wettstein, P. J., Blackwell, C., Borson, N., Hofmeister, E., Schuch, G., Soker, S., Moraes, C. T., West, M. D., and Atala, A. 2002. Generation of histocompatible tissues using nuclear transplantation. Nat Biotechnol 20: 689.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

El Fahime, E., Tremblay, J.P. (2006). Myocardial Regeneration: Which Cell and Why. In: Dib, N., Taylor, D.A., Diethrich, E.B. (eds) Stem Cell Therapy and Tissue Engineering for Cardiovascular Repair. Springer, Boston, MA. https://doi.org/10.1007/0-387-30939-X_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-30939-X_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25788-4

  • Online ISBN: 978-0-387-30939-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics