Skip to main content

Retro-Translocation of Proteins Across the Endoplasmic Reticulum Membrane

  • Chapter
Protein Movement Across Membranes

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 632 Accesses

Abstract

Many proteins synthesised in the cytosol are translocated across or inserted into the endoplasmic reticulum (ER) membrane. These proteins include not only those resident in the ER itself, but others destined for post-ER destinations such as the Golgi complex, lysosomes or secretion into the extracellular environment. Proteins that fail to fold or assemble correctly are detected by the quality control system of the ER and are disposed of by a process known as ER-associated degradation. Degradation does not occur in the ER itself. Rather the aberrant proteins are exported from the ER for degradation by the ubiquitin/proteasome pathway in the cytosol. This involves the retro-translocation of these proteins across the ER membrane. In this chapter we discuss our current understanding of the process of retro-translocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blobel G. Protein targeting. Chembiochem 2000; 1:86–102.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson AE, van Maes MA. The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Develop Biol 1999; 15:799–842.

    Article  Google Scholar 

  3. Rapoport TA, Jungnickel B, Kutay U. Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. Annu Rev Biochem 1996; 65:271–303.

    Article  PubMed  CAS  Google Scholar 

  4. Helenius A, Marquardt T, Braakman I. The endoplasmic reticulum as a protein-folding compartment. Trends Cell Biol 1992; 2:227–31.

    Article  PubMed  CAS  Google Scholar 

  5. Ellgaard L, Helenius A. ER quality control: towards an understanding at the molecular level. Curr Opin Cell Biol 2001; 13:431–437.

    Article  PubMed  CAS  Google Scholar 

  6. Ellgaard L, Helenius A. Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 2003; 4:181–191.

    Article  PubMed  CAS  Google Scholar 

  7. Hong E, Davidson A, Kaiser C. A pathway for targeting soluble misfolded proteins to the yeast vacuole. J Cell Biol 1996; 135:623–633.

    Article  PubMed  CAS  Google Scholar 

  8. Klausner RD, Sitia R. Protein degradation in the endoplasmic reticulum. Cell 1990; 62:611–4

    Article  PubMed  CAS  Google Scholar 

  9. Brodsky JL, McCracken AA. ER protein quality control and proteasome-mediated protein degradation. Semin Cell Dev Biol 1999; 10:507–513.

    Article  PubMed  CAS  Google Scholar 

  10. McCracken AA, Brodsky JL. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 1996; 132:291–8.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas P, Qu B, Pedersen P. Defective protein folding as a basis of human disease. Trends Biochem Sci 1995; 20:456–459.

    Article  PubMed  CAS  Google Scholar 

  12. Dobson C. Protein folding and misfolding. Nature 2003; 426:884–890.

    Article  PubMed  CAS  Google Scholar 

  13. Kopito RR, Sitia R. Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep 2000; 1:225–31.

    Article  PubMed  CAS  Google Scholar 

  14. Shamu C, Cox J, Walter P. The unfolded protein response pathway in yeast. Trends Cell Biol 1998; 4:56–60.

    Article  Google Scholar 

  15. Kozutsumi Y, Segal M, Gething M et al. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulsted proteins. Nature 1988; 332:462–464.

    Article  PubMed  CAS  Google Scholar 

  16. Friedlander R, Jarosch E, Urban J et al. A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2000; 2:379–384.

    Article  PubMed  CAS  Google Scholar 

  17. Liu CY, Kaufman RJ. The unfolded protein response. J Cell Sci 2003; 116:1861–1862.

    Article  PubMed  CAS  Google Scholar 

  18. Bonifacino JS, Suzuki CK, Lippincott-Schwartz J et al. Pre-Golgi degradation of newly synthesized T-cell antigen receptor chains: intrinsic sensitivity and the role of subunit assembly. J Cell Biol 1989; 109:73–83.

    Article  PubMed  CAS  Google Scholar 

  19. Chen C, Bonifacino JS, Yuan LC et al. Selective degradation of T cell antigen receptor chains retained in a pre-Golgi compartment. J Cell Biol 1988; 107:2149–2161.

    Article  PubMed  CAS  Google Scholar 

  20. Lippincott-Schwartz J, Bonifacino JS, Yuan LC et al. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell 1988; 54:209–20.

    Article  PubMed  CAS  Google Scholar 

  21. Bonifacino JS, Lippincott-Schwartz J. Degradation of proteins within the endoplasmic reticulum. Curr Opin Cell Biol 1991; 3:592–600.

    Article  PubMed  CAS  Google Scholar 

  22. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell 1994; 79:13–21.

    Article  PubMed  CAS  Google Scholar 

  23. Sommer T, Jentsch S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature 1993; 365:176–9.

    Article  PubMed  CAS  Google Scholar 

  24. Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science 1999; 286:1882–1888.

    Article  PubMed  CAS  Google Scholar 

  25. Ward C, Omura S, Kopito R. Degradation of CFTR by the ubiquitin-proteasomc pathway. Cell 1995; 83:121–127.

    Article  PubMed  CAS  Google Scholar 

  26. Jensen T, Loo M, Pind S et al. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 1995; 83:129–135.

    Article  PubMed  CAS  Google Scholar 

  27. Hampton RY. ER-associatcd degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 2002; 14:476–82.

    Article  PubMed  CAS  Google Scholar 

  28. Ravid T, Doolman R, Avner R et al. The ubiquitin-protcasome pathway mediates the regulated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 2000; 275:35840–35847.

    Article  PubMed  CAS  Google Scholar 

  29. Wiertz E, Jones T, Sun I et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 1996; 84:769–779.

    Article  PubMed  CAS  Google Scholar 

  30. Wiertz EJ, Tortorella D, Bogyo M et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 1996; 384:432–8.

    Article  PubMed  CAS  Google Scholar 

  31. Vashist S, Kim W, Belden WJ et al. Distinct retrieval and retention mechanisms are required for the quality control of endoplasmic reticulum protein folding. J Cell Biol 2001; 155:355–68.

    Article  PubMed  CAS  Google Scholar 

  32. Haynes CM, Caldwell S, Cooper AA. An HRD/DER-independent ER quality control mechanism involves Rsp5p-dependent ubiquitination and ER-Golgi transport. J Cell Biol 2002; 158:91–101.

    Article  PubMed  CAS  Google Scholar 

  33. Taxis C, Vogel F, Wolf DH. ER-Golgi traffic is a prerequisite for efficient ER degradation. Mol Biol Cell 2002; 13:1806–18.

    Article  PubMed  CAS  Google Scholar 

  34. Sato M, Sato K, Nakano A. Endoplasmic reticulum quality control of unassembled iron transporter depends on Rer1p-mediated retrieeval from the Golgi. Mol Biol Cell 2004; 15:1417–1424.

    Article  PubMed  CAS  Google Scholar 

  35. Kamhi-Nesher S, Shenkman M, Tolchinsky S et al. A novel quality control compartment derived from the endoplasmic reticulum. Mol Biol Cell 2001; 12:1711–23.

    PubMed  CAS  Google Scholar 

  36. Caldwell SR, Hill KJ, Cooper AA. Degradation of endoplasmic reticulum (ER) quality control substrates requires transport between the ER and Golgi. J Biol Chem 2001; 276:23296–23303.

    Article  PubMed  CAS  Google Scholar 

  37. Vashist S, Ng D. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 2004; 165:41–52.

    Article  PubMed  CAS  Google Scholar 

  38. Molinari M, Helenius A. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 2000; 288:331–3.

    Article  PubMed  CAS  Google Scholar 

  39. Molinari M, Galli C, Piccaluga V et al. Sequential assistance of molecular chaperones and transient formation of covalent complexes during protein degradation from the ER. J Cell Biol 2002; 158:247–57.

    Article  PubMed  CAS  Google Scholar 

  40. Zhang JX, Braakman I, Matlack KE et al. Quality control in the secretory pathway: the role of calreticulin, calnexin and BiP in the retention of glycoproteins with C-terminal truncations. Mol Biol Cell 1997; 8:1943–54.

    PubMed  CAS  Google Scholar 

  41. Zhang Y, Nijbroek G, Sullivan ML et al. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 2001; 12:1303–14.

    PubMed  CAS  Google Scholar 

  42. Nishikawa SI, Fewell SW, Kato Y et al. Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 2001; 153:1061–70.

    Article  PubMed  CAS  Google Scholar 

  43. Caramelo JJ, Castro OA, Alonso LG et al. UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc Natl Acad Sci USA 2003; 100:86–89.

    Article  PubMed  CAS  Google Scholar 

  44. Parodi AJ. Protein glucosylation and its role in protein folding. Annu Rev Biochem 2000; 69:69–93.

    Article  PubMed  CAS  Google Scholar 

  45. Oda Y, Hosokawa N, Wada I et al. EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 2003;299:1394–7.

    Article  PubMed  CAS  Google Scholar 

  46. Molinari M, Calanca V, Galli C et al. Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 2003; 299:1397–400.

    Article  PubMed  CAS  Google Scholar 

  47. Jakob C, Burda P, Roth J et al. Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 1998; 142:1223–1233.

    Article  PubMed  CAS  Google Scholar 

  48. Tokunaga F, Brostrom C, Koide T et al. Endoplasmic reticulum (ER)-associated degradation of misfolded N-linked glycoproteins is suppressed upon inhibition of ER mannosidase I. J Biol Chem 2000; 275:40757–64.

    Article  PubMed  CAS  Google Scholar 

  49. Knittler MR, Dirks S, Haas IG. Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc Natl Acad Sci USA 1995; 92:1764–8.

    Article  PubMed  CAS  Google Scholar 

  50. Knittler MR, Haas IG. Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release. EMBO J 1992; 11:1573–81.

    PubMed  CAS  Google Scholar 

  51. Brodsky JL, Werner ED, Dubas ME et al. The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 1999; 274:3453–3460.

    Article  PubMed  CAS  Google Scholar 

  52. Plemper RK, Bohmler S, Bordallo J et al. Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 1997; 388:891–5

    Article  PubMed  CAS  Google Scholar 

  53. Gilbert H. Protein disulfide isomerase and assisted protein folding. Biol Chem 1997; 272:29399–29402.

    Article  CAS  Google Scholar 

  54. Gillece P, Luz JM, Lennarz WJ et al. Export of a cysteine-free misfolded secretory protein from the endoplasmic reticulum for degradation requires interaction with protein disulfide isomerase. J Cell Biol 1999; 147:1443–56.

    Article  PubMed  CAS  Google Scholar 

  55. Fagioli C, Mezghrani A, Sitia R. Reduction of interchain disulfide bonds precedes the dislocation of Ig-mu chains from the endoplasmic reticulum to the cytosol for proteasomal degradation. J Biol Chem 2001; 276:40962–40967.

    Article  PubMed  CAS  Google Scholar 

  56. Wang Q, Chang A. Eps1, a novel PDI-related protein involved in ER quality control in yeast. EMBO J 1999; 18:5972–82.

    Article  PubMed  CAS  Google Scholar 

  57. Wang Q, Chang A. Substrate recognition in ER-associated degradation mediated by Eps1, a member of the protein disulfide isomerase family. EMBO J 2003; 22:3792–802.

    Article  PubMed  CAS  Google Scholar 

  58. Pilon M, Schekman R, Romisch K. Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 1997; 16:4540–8.

    Article  PubMed  CAS  Google Scholar 

  59. Biederer T, Volkwein C, Sommer T. Degradation of subunits of the Sec61p complex, an integral component of the ER membrane, by the ubiquitin-proteasome pathway. EMBO J 1996; 15:2069–2076.

    PubMed  CAS  Google Scholar 

  60. Hamman BD, Chen J-C, Johnson EE et al. The aqueous pore through the translocon has a diameter of 40–60A during cotraanslational protein translocation at the ER membrane. Cell 1997; 89:535–544.

    Article  PubMed  CAS  Google Scholar 

  61. Kosova Z, Wolf DH. For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 2003; 22:2309–2317.

    Article  Google Scholar 

  62. Meyer H, Shorter J, Seemann J et al. A complex of mammalian Ufd1 and Np14 links the AAA ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 2000; 19:2181–2192.

    Article  PubMed  CAS  Google Scholar 

  63. Hitchcock A, Krebber H, Frietze S et al. The conserved Np14 protein complex mediates proteasomal-dependent membrane-boundtranscription factor activation. Mol Biol Cell 2001; 12:3226–3241.

    PubMed  CAS  Google Scholar 

  64. Ye Y, Meyer HH, Rapoport TA. The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 2001; 414:652–6.

    Article  PubMed  CAS  Google Scholar 

  65. Bays N, Wilhovsky S, Goradia A et al. HRD4/NPL4 is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell 2001; 12:4114–4128.

    PubMed  CAS  Google Scholar 

  66. Jarosch E, Taxis C, Volkwein C et al. Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 2002; 4:134–9

    Article  PubMed  CAS  Google Scholar 

  67. Rabinovich E, Kerem A, Frohlich K-U et al. AAA-ATPase p97/Cdc48p, a cytosolic chaperone required of endoplasmic reticulum-associated protein degradation. Mol Cell Biol 2002; 22:626–634.

    Article  PubMed  CAS  Google Scholar 

  68. Braun S, Matuschewski K, Rape M et al. Role of trhe ubiquitin-selective CDC48UFD1/NPL4 chaperone (segregase) in ERAD of OLE 1 and other substrates. EMBO J 2002; 21:615–621.

    Article  PubMed  CAS  Google Scholar 

  69. de Virgilio M, Weninger H, Ivessa NE. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 1998; 273:9734–9743

    Article  PubMed  Google Scholar 

  70. Kikkert M, Hassink G, Barel M et al. Ubiquitination is essentila for human cytomegalovirus US11-mediated dislocation of MHC class 1 molecules from the endoplasmic reticulum to the cytosol. Biochem J 2001; 358:369–377.

    Article  PubMed  CAS  Google Scholar 

  71. Deeks ED, Cook JP, Day PJ et al. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Bio chemistry. 2002; 41:3405–3413.

    CAS  Google Scholar 

  72. Rodighiero C, Tsai B, Rapoport TA et al. Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 2002;3:1222–7.

    Article  PubMed  CAS  Google Scholar 

  73. Werner ED, Brodsky JL, McCracken AA. Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci USA 1996; 93:13797–801.

    Article  PubMed  CAS  Google Scholar 

  74. Flierman D, Ye Y, Dai M et al. Polyubiquitin serves as a recognition signal, rather than a ratcheting molecule, during retrotranslocation of proteins across the endoplasmic reticulum membrane. J Biol Chem 2003; 278:34774–34782.

    Article  PubMed  CAS  Google Scholar 

  75. Jarosch E, Geiss-Friedlander R, Meusser B et al. Protein dislocation from the endoplasmic reticulum-pulling out the suspect. Traffic 2002; 3:530–6.

    Article  PubMed  CAS  Google Scholar 

  76. Elkabetz Y, Shapira H, Rabinovich E et al. Distinct steps in the dislocation of luminal endoplasmic reticulum-associated degradation substrates. Roles of endoplasmic reticulum-boundp97/Cdc48p and proteasome. J Biol Chem 2004; 279:3980–3989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Michael Lord .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Lord, J.M., Roberts, L.M. (2005). Retro-Translocation of Proteins Across the Endoplasmic Reticulum Membrane. In: Protein Movement Across Membranes. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30871-7_7

Download citation

Publish with us

Policies and ethics