Skip to main content

Preprotein Translocation through the Sec Translocon in Bacteria

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The Sec translocase or translocon is the essential and ubiquitous system for protein translocation across or into the membrane. The core channel, the SecYE complex, is conserved across biological kingdoms and most of the polypeptide chains which are routed to extracellular or membrane locations in Bacteria use this pathway. Biochemical and genetic approaches have yielded a substantial body of information about functional aspects of Sec-mediated translocation and this information has recently been enriched with structural data at atomic resolution. This chapter reviews previously acquired facts and concepts concerning the Sec translocase of Bacteria in light of recent structural results and considers implications of these findings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Danese PN, Silhavy TJ. Targeting and assembly of periplasmic and outer-membrane proteins in Escherichia coli. Annu Rev Genet 1998; 32:59–94.

    Article  PubMed  CAS  Google Scholar 

  2. Bieker KL, Phillips GJ, Silhavy TJ. The sec and prl genes of Escherichia coli. J Bioenerg Biomembr 1990; 22:291–310.

    Article  PubMed  CAS  Google Scholar 

  3. Schatz PJ, Beckwith J. Genetic analysis of protein export in Escherichia coli. Annu Rev Genet 1990; 24:215–248.

    Article  PubMed  CAS  Google Scholar 

  4. Wickner W, Leonard MR. Escherichia coli preprotein translocase. J Biol Chem 1996; 271:29514–29516.

    Article  PubMed  CAS  Google Scholar 

  5. Valent QA, Scotti PA, High S et al. The Escherichia coli SRP and SecB targeting pathways converge at the translocon. EMBO J 1998; 17:2504–2512.

    Article  PubMed  CAS  Google Scholar 

  6. Koch HG, Hengelage T, Neumann-Haefelin C et al. In vitro studies with purified components reveal signal recognition particle (SRP) and SecA/SecB as constituents of two independent protein-targeting pathways of Escherichia coli. Mol Biol Cell 1999; 10:2163–2173.

    PubMed  CAS  Google Scholar 

  7. Driessen AJ, Manting EH, van der Does C. The structural basis of protein targeting and translocation in bacteria. Nat Struct Biol 2001; 8:492–498.

    Article  PubMed  CAS  Google Scholar 

  8. Brundage, L, Fimmel, CJ, Mizushima S et al. SecY, SecE and band 1 form the membrane-embedded domain of Escherichia coli preprotein translocase. J Biol Chem 1992; 267:4166–4170.

    PubMed  CAS  Google Scholar 

  9. Lill R, Cunningham K, Brundage LA et al. SecA protein hydrolyzes ATP and is an essential component of the protein translocation ATPase of Escherichia coli. EMBO J 1989; 8:961–966.

    PubMed  CAS  Google Scholar 

  10. Hartmann E, Sommer T, Prehn S et al. Evolutionary conservation of components of the protein translocation complex. Nature 1994; 367:654–657.

    Article  PubMed  CAS  Google Scholar 

  11. Cao TB, Saier MH. The general protein secretory pathway: Phylogenetic analyses leading to evolutionary conclusions. Biochem Biophys Acta 2003; 1609:115–125.

    PubMed  CAS  Google Scholar 

  12. Pogliano JA, Beckwith J. SecD and SecF facilitate protein export in Escherichia coli. EMBO J 1994; 13:554–561.

    PubMed  CAS  Google Scholar 

  13. Bakker EP, Randall LL. The requirement for energy during export of beta-lactamase in Escherichia coli is fulfilled by the total protonmotive force. EMBO J 1984; 3:895–900.

    PubMed  CAS  Google Scholar 

  14. Brundage L, Henndrick JP, Schiebel E et al. The purified E. coli integral membrane protein SecY/E is sufficient for reconstitution of SecA-dependent precursor protein translocation. Cell 1990; 62:649–657.

    Article  PubMed  CAS  Google Scholar 

  15. Duong F, Wickner W. Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 1997; 16:2756–2768.

    Article  PubMed  CAS  Google Scholar 

  16. Collinson I, Breyton C, Duong F et al. Projection structure and oligomeric properties of a bacterial core protein translocase. EMBO J 2001; 20:2462–2471.

    Article  PubMed  CAS  Google Scholar 

  17. Breyton C, Haase W, Rapoport TA et al. Three-dimensional structure of the bacterial protein-translocation complex SecYEG. Nature 2002; 418:662–665.

    Article  PubMed  CAS  Google Scholar 

  18. Van den Berg B, Clemons Jr WM, Collinson I et al. X-ray structure of a protein-conducting channel. Nature 2004; 427:36–44.

    Article  PubMed  CAS  Google Scholar 

  19. Pugsley AP. Translocation of proteins with signal sequences across membranes. Curr Opin Cell Biol 1990; 2:609–616.

    Article  PubMed  CAS  Google Scholar 

  20. von Heijne G. Life and death of a signal peptide. Nature 1998; 396:111–113.

    Article  CAS  Google Scholar 

  21. Martoglio B, Dobberstein B. Signal sequences: More than just greasy peptides. Trends Cell Biol 1998; 8:410–415.

    Article  PubMed  CAS  Google Scholar 

  22. Mothes W, Prehn S, Rapoport TA. Systematic probing of the environment of a translocating secretory protein during translocation through the ER membrane. EMBO J 1994; 13:3973–3982.

    PubMed  CAS  Google Scholar 

  23. Plath K, Mothes W, Wilkinson BM et al. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 1998; 94:795–807.

    Article  PubMed  CAS  Google Scholar 

  24. Plath K, Wilkinson BM, Stirling CJ et al. Interactions between Sec complex and prepro-alpha-factor during posttranslational protein transport into the endoplasmic reticulum. Mol Biol Cell 2004; 15:1–10.

    Article  PubMed  CAS  Google Scholar 

  25. Martoglio B, Hofmann MW, Brunner J et al. The protein-conducting channel in the membrane of the endoplasmic reticulum is open laterally toward the lipid bilayer. Cell 1995; 81:207–214.

    Article  PubMed  CAS  Google Scholar 

  26. Goder V, Junne T, Spiess M. Sec61p contributes to signal sequence orientation according to the positive-inside rule. Mol Biol Cell 2004; 15:1470–1478.

    Article  PubMed  CAS  Google Scholar 

  27. Goder V, Spiess M. Molecular mechanism of signal sequence orientation in the endoplasmic reticulum. EMBO J 2003; 22:3645–3653.

    Article  PubMed  CAS  Google Scholar 

  28. Simon SM, Blobel G. Signal peptides open protein-conducting channels in E coli. Cell 1992; 69:677–684.

    Article  PubMed  CAS  Google Scholar 

  29. Harris CR, Silhavy TJ. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J Bacteriol 1999; 181:3438–3444.

    PubMed  CAS  Google Scholar 

  30. Flower AM, Doebele RC, Silhavy TJ. PrlA and PrlG suppressors reduce the requirement for signal sequence recognition. J Bacteriol 1994; 176:5607–5614.

    PubMed  CAS  Google Scholar 

  31. Derman AI, Puziss JW, Bassford Jr PJ et al. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J 1993; 12:879–888.

    PubMed  CAS  Google Scholar 

  32. Duong F, Wickner W. The PrlA and PrlG phenotypes are caused by a loosened association among the translocase SecYEG subunits. EMBO J 1999; 18:3263–3270.

    Article  PubMed  CAS  Google Scholar 

  33. Sato K, Mori H, Yoshida M et al. Short hydrophobic segments in the mature domain of ProOmpA determine its stepwise movement during translocation across the cytoplasmic membrane of Escherichia coli. J Biol Chem 1997; 272:5880–5886.

    Article  PubMed  CAS  Google Scholar 

  34. Sato K, Mori H, Yoshida M et al. In vitro analysis of the stop-transfer process during translocation across the cytoplasmic membrane of Escherichia coli. J Biol Chem 1997; 272:20082–20087.

    Article  PubMed  CAS  Google Scholar 

  35. Duong F, Wickner W. Sec-dependent membrane protein biogenesis: SecYEG, preprotein hydrophobicity and translocation kinetics control the stop-transfer function. EMBO J 1998; 17:696–705.

    Article  PubMed  CAS  Google Scholar 

  36. Saaf A, Wallin E, von Heijne G. Stop-transfer function of pseudo-random amino acid segments during translocation across prokaryotic and eukaryotic membranes. Eur J Biochem 1998; 251:821–829.

    Article  PubMed  CAS  Google Scholar 

  37. Heinrich SU, Mothes W, Brunner J et al. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 2000; 102:233–244.

    Article  PubMed  CAS  Google Scholar 

  38. Beckmann R, Bubeck D, Grassucci R et al. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 1997; 278:2123–2126.

    Article  PubMed  CAS  Google Scholar 

  39. Ménétret JF, Neuhof A, Morgan DG et al. The structure of ribosome-channel complexes engaged in protein translocation. Mol Cell 2000; 6:1219–1232.

    Article  PubMed  Google Scholar 

  40. Meyer TH, Ménétret JF, Breitling R et al. The bacterial SecY/E translocation complex forms channel-like structures similar to those of the eukaryotic Sec61p Complex. J Mol Biol 1999; 285:1789–1800.

    Article  PubMed  CAS  Google Scholar 

  41. Manting EH, van Der Does C, Remigy H et al. SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J 2000; 19:852–861.

    Article  PubMed  CAS  Google Scholar 

  42. Kaufmann A, Manting EH, Veenendaal AK et al. Cysteine-directed cross-linking demonstrates that helix 3 of SecE is close to helix 2 of SecY and helix 3 of a neighboring secE. Biochemistry 1999; 38:9115–9125.

    Article  PubMed  CAS  Google Scholar 

  43. Bessonneau P, Besson V, Collinson I et al. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J 2002; 21:995–1003.

    Article  PubMed  CAS  Google Scholar 

  44. Veenendaal AK, Van Der Does C, Driessen AJ. The core of the bacterial translocase harbors a tilted transmembrane segment 3 of SecE. J Biol Chem 2002; 277:36640–36645.

    Article  PubMed  CAS  Google Scholar 

  45. Clemons Jr WM, Menetret JF, Akey CW et al. Structural insight into the protein translocation channel. Curr Opin Struct Biol 2004; 14:390–396.

    Article  PubMed  CAS  Google Scholar 

  46. Yahr TL, Wickner WT. Evaluating the oligomeric state of SecYEG in preprotein translocase. EMBO J 2000; 19:4393–4401.

    Article  PubMed  CAS  Google Scholar 

  47. Mori H, Tsukazaki T, Masui R et al. Fluorescence resonance energy transfer analysis of protein translocase. SecYE from Thermus thermophilus HB8 forms a constitutive oligomer in membranes. J Biol Chem 2003; 278:14257–14264.

    Article  PubMed  CAS  Google Scholar 

  48. Hanein D, Matlack KE, Jungnickel B et al. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 1996; 87:721–732.

    Article  PubMed  CAS  Google Scholar 

  49. Hartl FU, Lecker S, Schiebel E et al. The binding cascade of SecB to SecA to SecY/E mediates preprotein targeting to the E. coli plasma membrane. Cell 1990; 63:269–279.

    Article  PubMed  CAS  Google Scholar 

  50. Economou A. Bacterial secretome: The assembly manual and operating instructions. Mol Membr Biol 2002; 19:159–169.

    Article  PubMed  CAS  Google Scholar 

  51. Hunt JF, Weinkauf S, Henry L et al. Nucleotide control of interdomain interactions in the conformational reaction cycle of SecA. Science 2002; 297:2018–2026.

    Article  PubMed  CAS  Google Scholar 

  52. Caruthers JM, McKay DB. Helicase structure and mechanism. Curr Opin Struct Biol 2002; 12:123–133.

    Article  PubMed  CAS  Google Scholar 

  53. Kimura E, Akita M, Matsuyama S et al. Determination of a region in SecA that interacts with presecretory proteins in Escherichia coli. J Biol Chem 1991; 266:6600–6606.

    PubMed  CAS  Google Scholar 

  54. Baud C, Karamanou S, Sianidis G et al. Allosteric communication between signal peptides and the SecA protein DEAD motor ATPase domain. J Biol Chem 2002; 277:13724–13731.

    Article  PubMed  CAS  Google Scholar 

  55. Breukink E, Nouwen N, van Raalte A et al. The C terminus of SecA is involved in both lipid binding and SecB binding. J Biol Chem 1995; 270:7902–7907.

    Article  PubMed  CAS  Google Scholar 

  56. Fekkes P, de Wit JG, Boorsma A et al. Zinc stabilizes the SecB binding site of SecA. Biochemistry 1999; 38:5111–5116.

    Article  PubMed  CAS  Google Scholar 

  57. Osborne AR, Clemons Jr WM, Rapoport TA. A large conformational change of the translocation ATPase SecA. Proc Natl Acad Sci USA 2004; 101:10937–10942.

    Article  PubMed  CAS  Google Scholar 

  58. Snyders S, Ramamurthy V, Oliver D. Identification of a region of interaction between Escherichia coli SecA and SecY proteins. J Biol Chem 1997; 272:11302–11306.

    Article  PubMed  CAS  Google Scholar 

  59. Matsumoto G, Yoshihisa T, Ito K. SecY and SecA interact to allow SecA insertion and protein translocation across the Escherichia coli plasma membrane. EMBO J 1997; 16:6384–6393.

    Article  PubMed  CAS  Google Scholar 

  60. Mori H, Ito K. An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. Proc Natl Acad Sci USA 2001; 98:5128–5133.

    Article  PubMed  CAS  Google Scholar 

  61. Chiba K, Mori H, Ito K. Roles of the C-terminal end of SecY in protein translocation and viability of Escherichia coli. J Bacteriol 2002; 184:2243–2250.

    Article  PubMed  CAS  Google Scholar 

  62. Matsumoto G, Nakatogawa H, Mori H et al. Genetic dissection of SecA: Suppressor mutations against the secY205 translocase defect. Genes Cells 2000;5:991–999.

    Article  PubMed  CAS  Google Scholar 

  63. Dapic V, Oliver D. Distinct membrane binding properties of N-and C-terminal domains of Escherichia coli SecA ATPase. J Biol Chem 2000; 275:25000–25007.

    Article  PubMed  CAS  Google Scholar 

  64. Schiebel E, Driessen AJM, Hartl FU et al. ΔμH+ and ATP function at different steps of the catalytic cycle of preprotein translocase. Cell 1991; 64:927–939.

    Article  PubMed  CAS  Google Scholar 

  65. de Keyzer J, van der Does C, Kloosterman TG et al. Direct demonstration of ATP-dependent release of SecA from a translocating preprotein by surface plasmon resonance. J Biol Chem 2003; 278:29581–29586.

    Article  PubMed  CAS  Google Scholar 

  66. Uchida K, Mori H, Mizushima S. Stepwise movement of preproteins in the process of translocation across the cytoplasmic membrane of Escherichia coli. J Biol Chem 1995; 270:30862–30868.

    Article  PubMed  CAS  Google Scholar 

  67. van der Wolk JP, de Wit JG, Driessen AJM. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J 1997; 16:7297–7304.

    Article  PubMed  Google Scholar 

  68. Economou A, Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 1994; 78:835–843.

    Article  PubMed  CAS  Google Scholar 

  69. Eichler J, Wickner W. Both an N-terminal 65-kDa domain and a C-terminal 30-kDa domain of SecA cycle into the membrane at SecYEG during translocation. Proc Natl Acad Sci USA 1997; 94:5574–5581.

    Article  PubMed  CAS  Google Scholar 

  70. Kim YJ, Rajapandi T, Oliver D. SecA protein is exposed to the periplasmic surface of the E. coli inner membrane in its active state. Cell 1994; 78:845–853.

    Article  PubMed  CAS  Google Scholar 

  71. van der Does C, den Blaauwen T, de Wit JG et al. SecA is an intrinsic subunit of the Escherichia coli preprotein translocase and exposes its carboxyl terminus to the periplasm. Mol Microbiol 1996; 22:619–629.

    Article  PubMed  Google Scholar 

  72. Ramamurthy V, Oliver D. Topology of the integral membrane form of Escherichia coli SecA protein reveals multiple periplasmically exposed regions and modulation by ATP binding. J Biol Chem 1997; 272:23239–23246.

    Article  PubMed  CAS  Google Scholar 

  73. Sianidis G, Karamanou S, Vrontou E et al. Cross-talk between catalytic and regulatory elements in a DEAD motor domain is essential for SecA function. EMBO J 2001; 20:961–970.

    Article  PubMed  CAS  Google Scholar 

  74. Fak JJ, Itkin A, Ciobanu DD et al. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Biochemistry 2004; 43:7307–7327.

    Article  PubMed  CAS  Google Scholar 

  75. Woodbury RL, Hardy SJ, Randall LL. Complex behavior in solution of homodimeric SecA. Protein Sci 2002; 11:875–882.

    Article  PubMed  CAS  Google Scholar 

  76. Ding H, Hunt JF, Mukerji I et al. Bacillus subtilis SecA ATPase exists as an antiparallel dimer in solution. Biochemistry 2003; 42:8729–8738.

    Article  PubMed  CAS  Google Scholar 

  77. Or E, Navon A, Rapoport T. Dissociation of the dimeric SecA ATPase during protein translocation across the bacterial membrane. EMBO J 2002; 21:4470–4479.

    Article  PubMed  CAS  Google Scholar 

  78. Driessen AJ. SecA, the peripheral subunit of the Escherichia coli precursor protein translocase, is functional as a dimer. Biochemistry 1993; 32:13190–13197.

    Article  PubMed  CAS  Google Scholar 

  79. Benach J, Chou YT, Fak JJ et al. Phospholipid-induced monomerization and signal-peptide-induced oligomerization of SecA. J Biol Chem 2003; 278:3628–3638.

    Article  PubMed  CAS  Google Scholar 

  80. Duong F. Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J 2003; 22:4375–4384.

    Article  PubMed  CAS  Google Scholar 

  81. Tziatzios C, Schubert D, Lotz M et al. The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. J Mol Biol 2004; 340:513–524.

    Article  PubMed  CAS  Google Scholar 

  82. Soultanas P, Wigley DB. DNA helicases: ‘Inching forward’. Curr Opin Struct Biol 2000; 10:124–128.

    Article  PubMed  CAS  Google Scholar 

  83. Velankar SS, Soultanas P, Dillingham MS et al. Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 1999; 97:75–84.

    Article  PubMed  CAS  Google Scholar 

  84. Driessen AJM. Precusor protein translocation by the Escherichia coli translocase is directed by the protonmotive force. EMBO J 1992; 11:847–853.

    PubMed  CAS  Google Scholar 

  85. Geller BL, Green HM. Translocation of pro-OmpA across inner membrane vesicles of Escherichia coli occurs in two consecutive energetically distinct steps. J Biol Chem 1989; 264:16465–16469.

    PubMed  CAS  Google Scholar 

  86. Tani K, Shiozuka K, Tokuda H et al. In vitro analysis of the process of translocation of OmpA across the Escherichia coli cytoplasmic membrane. A translocation intermediate accumulates transiently in the absence of the proton motive force. J Biol Chem 1989; 264:18582–18588.

    PubMed  CAS  Google Scholar 

  87. Driessen AJM, Wickner WT. Proton transfer is rate-limiting for translocation of precursor proteins by the Escherichia coli translocase. Proc Natl Acad Sci USA 1991; 88:2471–2475.

    Article  PubMed  CAS  Google Scholar 

  88. van Dalen A, Killian A, de Kruijff B. Delta-psi stimulates membrane translocation of the C-terminal part of a signal sequence. J Biol Chem 1999; 274:19913–19918.

    Article  PubMed  Google Scholar 

  89. Daniels CJ, Bole DG, Quay SC et al. Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli. Proc Natl Acad Sci USA 1981; 78:5396–5400.

    Article  PubMed  CAS  Google Scholar 

  90. Nouwen N, de Kruijff B, Tommassen J. PrlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors. Proc Natl Acad Sci USA 1996; 93:5953–5957.

    Article  PubMed  CAS  Google Scholar 

  91. Nishiyama KI, Fukuda A, Morita K et al. Membrane deinsertion of SecA underlying proton motive force-dependent stimulation of protein translocation. EMBO J 1999; 18:1049–1058.

    Article  PubMed  CAS  Google Scholar 

  92. Yamada H, Matsuyama S, Tokuda H et al. A high concentration of SecA allows proton motive force-independent translocation of a model secretory protein into Escherichia coli membrane vesicles. J Biol Chem 1989; 264:18577–18581.

    PubMed  CAS  Google Scholar 

  93. van der Wolk JP, Fekkes P, Boorsma A et al. PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA-SecY interaction during the initiation of translocation. EMBO J 1998; 17:3631–3639.

    Article  PubMed  Google Scholar 

  94. Nishiyama K, Mizushima S, Tokuda H. A novel membrane protein involved in protein translocation across the cytoplasmic membrane of Escherichia coli. EMBO J 1993; 12:3409–3415.

    PubMed  CAS  Google Scholar 

  95. Nishiyama K, Hanada M, Tokuda H. Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 1994; 13:3272–3277.

    PubMed  CAS  Google Scholar 

  96. Matsumoto G, Mori H, Ito K. Roles of SecG in ATP-and SecA-dependent protein translocation. Proc Natl Acad Sci USA 1998; 95:13567–13572.

    Article  PubMed  CAS  Google Scholar 

  97. Hanada M, Nishiyama K, Tokuda H. SecG plays a critical role in protein translocation in the absence of the proton motive force as well as at low temperature. FEBS Lett 1996; 381:25–28.

    Article  PubMed  CAS  Google Scholar 

  98. Nishiyama K, Suzuki T, Tokuda H. Inversion of the membrane topology of SecG coupled with SecA-dependent preprotein translocation. Cell 1996; 85:71–81.

    Article  PubMed  CAS  Google Scholar 

  99. Nouwen N, Driessen AJM. SecDFyajC forms a heterotetrameric complex with YidC. Mol Microbiol 2002; 44:1397–1405.

    Article  PubMed  CAS  Google Scholar 

  100. Pogliano KJ, Beckwith J. Genetic and molecular characterization of the Escherichia coli secD operon and its products. J Bacteriol 1994; 176:804–814.

    PubMed  CAS  Google Scholar 

  101. Bolhuis A, Broekhuizen CP, Sorokin A et al. SecDF of Bacillus subtilis, a molecular Siamese twin required for the efficient secretion of proteins. J Biol Chem 1998; 273:21217–21224.

    Article  PubMed  CAS  Google Scholar 

  102. Kato Y, Nishiyama K, Tokuda H. Depletion of SecDF-YajC causes a decrease in the level of SecG: Implication for their functional interaction. FEBS Lett 2003; 550:114–118.

    Article  PubMed  CAS  Google Scholar 

  103. Duong F, Wickner W. The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 1997; 16:4871–4879.

    Article  PubMed  CAS  Google Scholar 

  104. Economou A, Pogliano JA, Beckwith J. SecA membrane cycling at SecYEG is driven by distinct ATP binding and hydrolysis events and is regulated by SecD and SecF. Cell 1995; 83:1171–1181.

    Article  PubMed  CAS  Google Scholar 

  105. Matsuyama S, Fujita Y, Mizushima S. SecD is involved in the release of translocated secretory proteins from the cytoplasmic membrane of Escherichia coli. EMBO J 1993; 12:265–270.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Duong .

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Maillard, A.P., Chan, K.K.Y., Duong, F. (2005). Preprotein Translocation through the Sec Translocon in Bacteria. In: Protein Movement Across Membranes. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-30871-7_2

Download citation

Publish with us

Policies and ethics